Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sensors (Basel) ; 24(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203068

RESUMO

Musculoskeletal conditions affect millions of people globally; however, conventional treatments pose challenges concerning price, accessibility, and convenience. Many telerehabilitation solutions offer an engaging alternative but rely on complex hardware for body tracking. This work explores the feasibility of a model for 3D Human Pose Estimation (HPE) from monocular 2D videos (MediaPipe Pose) in a physiotherapy context, by comparing its performance to ground truth measurements. MediaPipe Pose was investigated in eight exercises typically performed in musculoskeletal physiotherapy sessions, where the Range of Motion (ROM) of the human joints was the evaluated parameter. This model showed the best performance for shoulder abduction, shoulder press, elbow flexion, and squat exercises. Results have shown a MAPE ranging between 14.9% and 25.0%, Pearson's coefficient ranging between 0.963 and 0.996, and cosine similarity ranging between 0.987 and 0.999. Some exercises (e.g., seated knee extension and shoulder flexion) posed challenges due to unusual poses, occlusions, and depth ambiguities, possibly related to a lack of training data. This study demonstrates the potential of HPE from monocular 2D videos, as a markerless, affordable, and accessible solution for musculoskeletal telerehabilitation approaches. Future work should focus on exploring variations of the 3D HPE models trained on physiotherapy-related datasets, such as the Fit3D dataset, and post-preprocessing techniques to enhance the model's performance.


Assuntos
Telerreabilitação , Humanos , Estudos de Viabilidade , Terapia por Exercício , Exercício Físico , Articulação do Joelho
2.
Nat Chem Biol ; 8(1): 102-10, 2011 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22101605

RESUMO

Focal adhesion kinase (FAK) regulates cellular processes that affect several aspects of development and disease. The FAK N-terminal FERM (4.1 protein-ezrin-radixin-moesin homology) domain, a compact clover-leaf structure, binds partner proteins and mediates intramolecular regulatory interactions. Combined chemical cross-linking coupled to MS, small-angle X-ray scattering, computational docking and mutational analyses showed that the FAK FERM domain has a molecular cleft (~998 Å(2)) that interacts with sarcomeric myosin, resulting in FAK inhibition. Accordingly, mutations in a unique short amino acid sequence of the FERM myosin cleft, FP-1, impaired the interaction with myosin and enhanced FAK activity in cardiomyocytes. An FP-1 decoy peptide selectively inhibited myosin interaction and increased FAK activity, promoting cardiomyocyte hypertrophy through activation of the AKT-mammalian target of rapamycin pathway. Our findings uncover an inhibitory interaction between the FAK FERM domain and sarcomeric myosin that presents potential opportunities to modulate the cardiac hypertrophic response through changes in FAK activity.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/química , Miócitos Cardíacos/química , Miosinas/química , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Animais , Galinhas , Ativação Enzimática , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Hipertrofia/metabolismo , Camundongos , Modelos Moleculares , Miócitos Cardíacos/metabolismo , Miosinas/metabolismo , Estrutura Quaternária de Proteína , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 300(3): H902-12, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21148763

RESUMO

We studied the implication of focal adhesion kinase (FAK) in cardiac mitochondrial biogenesis induced by mechanical stress. Prolonged stretching (2-12 h) of neonatal rat ventricular myocytes (NRVM) upregulated the main components of mitochondrial transcription cascade [peroxisome proliferator-activated receptor coactivator-1 (PGC-1α), nuclear respiratory factor (NRF-1), and mitochondrial transcription factor A]. Concomitantly, prolonged stretching enhanced mitochondrial biogenesis [copy number of mitochondrial DNA (mtDNA), content of the subunit IV of cytochrome oxidase, and mitochondrial staining-green fluorescence intensity of Mitotracker green] and induced the hypertrophic growth (cell size and atrial natriuretic peptide transcripts) of NRVM. Furthermore, the stretching of NRVM enhanced phosphorylation, nuclear localization, and association of FAK with PGC-1α. Recombinant FAK COOH-terminal, but not the NH(2)-terminal or kinase domain, precipitated PGC-1α from nuclear extracts of NRVM. Depletion of FAK by RNA interference suppressed the upregulation of PGC-1α and NRF-1 and markedly attenuated the enhanced mitochondrial biogenesis and hypertrophic growth of stretched NRVM. In the context of energy metabolism, FAK depletion became manifest by a reduction of ATP levels in stretched NRVM. Complementary studies in adult mice left ventricle demonstrated that pressure overload upregulated PGC-1α, NRF-1, and mtDNA. In vivo FAK silencing transiently attenuated the upregulation of PGC-1α, NRF-1, and mtDNA, as well as the left ventricular hypertrophy induced by pressure overload. In conclusion, activation of FAK signaling seems to be important for conferring enhanced mitochondrial biogenesis coupled to the hypertrophic growth of cardiomyocytes in response to mechanical stress, via control of mitochondrial transcription cascade.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Mitocôndrias Cardíacas/enzimologia , Miócitos Cardíacos/enzimologia , Estresse Mecânico , Animais , Animais Recém-Nascidos , Células Cultivadas , DNA Mitocondrial/metabolismo , DNA Mitocondrial/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Camundongos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Miócitos Cardíacos/fisiologia , Fator 1 Relacionado a NF-E2/metabolismo , Fator 1 Relacionado a NF-E2/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Ratos , Ratos Wistar , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Regulação para Cima
4.
Circ Res ; 103(8): 813-24, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18757826

RESUMO

The aim of this study was to investigate whether Shp2 (Src homology region 2, phosphatase 2) controls focal adhesion kinase (FAK) activity and its trophic actions in cardiomyocytes. We show that low phosphorylation levels of FAK in nonstretched neonatal rat ventricular myocytes (NRVMs) coincided with a relatively high basal association of FAK with Shp2 and Shp2 phosphatase activity. Cyclic stretch (15% above initial length) enhanced FAK phosphorylation at Tyr397 and reduced FAK/Shp2 association and phosphatase activity in anti-Shp2 precipitates. Recombinant Shp2 C-terminal protein tyrosine phosphatase domain (Shp2-PTP) interacted with nonphosphorylated recombinant FAK and dephosphorylated FAK immunoprecipitated from NRVMs. Depletion of Shp2 by specific small interfering RNA increased the phosphorylation of FAK Tyr397, Src Tyr418, AKT Ser473, TSC2 Thr1462, and S6 kinase Thr389 and induced hypertrophy of nonstretched NRVMs. Inhibition of FAK/Src activity by PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine} abolished the phosphorylation of AKT, TSC2, and S6 kinase, as well as the hypertrophy of NRVMs induced by Shp2 depletion. Inhibition of mTOR (mammalian target of rapamycin) with rapamycin blunted the hypertrophy in NRVMs depleted of Shp2. NRVMs treated with PP2 or depleted of FAK by specific small interfering RNA were defective in FAK, Src, extracellular signal-regulated kinase, AKT, TSC2, and S6 kinase phosphorylation, as well as in the hypertrophic response to prolonged stretch. The stretch-induced hypertrophy of NRVMs was also prevented by rapamycin. These findings demonstrate that basal Shp2 tyrosine phosphatase activity controls the size of cardiomyocytes by downregulating a pathway that involves FAK/Src and mTOR signaling pathways.


Assuntos
Cardiomegalia/enzimologia , Tamanho Celular , Mecanotransdução Celular , Miócitos Cardíacos/enzimologia , Proteínas Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Quinases da Família src/metabolismo , Animais , Animais Recém-Nascidos , Cardiomegalia/patologia , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Transfecção , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo , Quinases da Família src/antagonistas & inibidores
5.
Circ Res ; 101(12): 1339-48, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17947798

RESUMO

Hypertrophy is a critical event in the onset of failure in chronically overloaded hearts. Focal adhesion kinase (FAK) has attracted particular attention as a mediator of hypertrophy induced by increased load. Here, we demonstrate increased expression and phosphorylation of FAK in the hypertrophic left ventricles (LVs) of aortic-banded mice. We used an RNA interference strategy to examine whether FAK signaling plays a role in the pathophysiology of load-induced LV hypertrophy and failure. Intrajugular delivery of specific small interfering RNA induced prolonged FAK silencing ( approximately 70%) in both normal and hypertrophic LVs. Myocardial FAK silencing was accompanied by prevention, as well as reversal, of load-induced left ventricular hypertrophy. The function of LVs was preserved and the survival rate was higher in banded mice treated with small interfering RNA targeted to FAK, despite the persistent pressure overload. Studies in cardiac myocytes and fibroblasts harvested from LVs confirmed the ability of the systemically administered specific small interfering RNA to silence FAK in both cell types. Further analysis indicated attenuation of cardiac myocyte hypertrophic growth and of the rise in the expression of beta-myosin heavy chain in overloaded LVs. Moreover, FAK silencing was demonstrated to attenuate the rise in the fibrosis, collagen content, and activity of matrix metalloproteinase-2 in overloaded LVs, as well as the rise of matrix metalloproteinase-2 protein expression in fibroblasts harvested from overloaded LVs. This study provides novel evidence that FAK may be involved in multiple aspects of the pathophysiology of cardiac hypertrophy and failure induced by pressure overload.


Assuntos
Pressão Sanguínea/genética , Quinase 1 de Adesão Focal/fisiologia , Marcação de Genes/métodos , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/prevenção & controle , RNA Interferente Pequeno/genética , Animais , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/genética , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/genética , Camundongos
6.
Clin Sci (Lond) ; 113(4): 195-204, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17497960

RESUMO

FAK (focal adhesion kinase) has been shown to mediate the hypertrophic growth of the left ventricle. Experimental results also suggest that FAK may contribute to the structural and functional deterioration of the chronically overloaded left ventricle. In the present study, we postulated that FAK expression and phosphorylation may be altered in the volume-overloaded heart in humans. FAK expression and phosphorylation at Tyr(397) were detected by Western blotting and immunohistochemistry in samples from endomyocardial biopsies from patients with MR (mitral regurgitation; n=21) and donor subjects (n=4). Hearts from patients with MR had degenerated cardiac myocytes and areas of fibrosis. In this group, the myocardial collagen area was increased (18% in MR hearts compared with 3% in donor hearts respectively) and correlated negatively with left ventricular ejection fraction (r=-0.74; P>0.001). FAK expression and phosphorylation at Tyr(397) (a marker of the enzyme activity) were increased in samples from MR hearts compared with those from donor hearts (3.1- and 4.9-fold respectively). In myocardial samples from donor hearts, anti-FAK staining was almost exclusively restricted to cardiac myocytes; however, in myocardial samples from MR hearts, staining with the anti-FAK antibody was found to occur in myocytes and the interstitium. There was a positive correlation between collagen and the interstitial areas stained with the anti-FAK antibody (r=0.76; P>0.001). Anti-FAK and anti-vimentin staining of the interstitial areas of samples from MR hearts were extensively superimposed, indicating that most of the interstitial FAK was located in fibroblasts. In conclusion, FAK expression and phosphorylation are increased and may contribute to the underlying structural and functional abnormalities in the volume-overloaded heart in humans.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Insuficiência da Valva Mitral/enzimologia , Fibrose Endomiocárdica/enzimologia , Fibrose Endomiocárdica/etiologia , Feminino , Humanos , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Insuficiência da Valva Mitral/complicações , Insuficiência da Valva Mitral/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/ultraestrutura , Fosforilação , Transdução de Sinais , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/etiologia
7.
Shock ; 37(1): 77-84, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21921830

RESUMO

Sepsis and septic shock are associated with cardiac depression. Cardiovascular instability is a major cause of death in patients with sepsis. Focal adhesion kinase (FAK) is a potential mediator of cardiomyocyte responses to oxidative and mechanical stress. Myocardial collagen deposition can affect cardiac compliance and contractility. The aim of the present study was to determine whether the silencing of FAK is protective against endotoxemia-induced alterations of cardiac structure and function. In male Wistar rats, endotoxemia was induced by intraperitoneal injection of lipopolysaccharide (10 mg/kg). Cardiac morphometry and function were studied in vivo by left ventricular catheterization and histology. Intravenous injection of small interfering RNA targeting FAK was used to silence myocardial expression of the kinase. The hearts of lipopolysaccharide-injected rats showed collagen deposition, increased matrix metalloproteinase 2 activity, and myocyte hypertrophy, as well as reduced 24-h +dP/dt and -dP/dt, together with hypotension, increased left ventricular end-diastolic pressure, and elevated levels of FAK (phosphorylated and unphosphorylated). Focal adhesion kinase silencing reduced the expression and activation of the kinase in cardiac tissue, as well as protecting against the increased collagen deposition, greater matrix metalloproteinase 2 activity, and reduced cardiac contractility that occur during endotoxemia. In conclusion, FAK is activated in endotoxemia, playing a role in cardiac remodeling and in the impairment of cardiac function. This kinase represents a potential therapeutic target for the protection of cardiac function in patients with sepsis.


Assuntos
Endotoxemia/enzimologia , Quinase 1 de Adesão Focal/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteínas Musculares/biossíntese , Miocárdio/enzimologia , RNA Interferente Pequeno/farmacologia , Animais , Colágeno/metabolismo , Endotoxemia/induzido quimicamente , Endotoxemia/patologia , Ativação Enzimática/efeitos dos fármacos , Quinase 1 de Adesão Focal/antagonistas & inibidores , Inativação Gênica/efeitos dos fármacos , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miocárdio/patologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar
8.
Cardiovasc Res ; 86(3): 421-31, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20038548

RESUMO

AIMS: Cardiac fibroblasts are activated by mechanical stress, but the underlying mechanisms involved remain poorly understood. In this study, we investigated whether focal adhesion kinase (FAK) plays a role in the activation of cardiac fibroblasts in response to cyclic stretch. METHODS AND RESULTS: Neonatal (NF-P3/80--third passage, 80% confluence) and adult (AF-P1/80--first passage, 80% confluence) rat cardiac fibroblasts were exposed to cyclic stretch (biaxial, 1 Hz), which enhanced FAK phosphorylation at Tyr397. Proliferation (anti-5-bromo-2'-deoxyuridine and anti-Ki67 nuclear labelling), differentiation into myofibroblasts (expression of alpha-smooth muscle actin--alpha-SMA), and the activity of matrix metalloproteinase-2 were equally enhanced in stretched NF-P3/80 and AF-P1/80. Treatment with the integrin inhibitor RGD peptide impaired FAK phosphorylation and increased apoptosis (TUNEL) in non-stretched and stretched NF-P3/80, whereas FAK silencing induced by small interfering RNA modestly enhanced apoptosis only in stretched cells. RGD peptide or FAK silencing suppressed the activation of NF-P3/80 invoked by cyclic stretch. In addition, NF-P3/80 depleted of FAK were defective in AKT Ser473, TSC-2 Thr1462, and S6 kinase Thr389 phosphorylation induced by cyclic stretch. The activation of NF-P3/80 invoked by cyclic stretch was prevented by pre-treatment with the mammalian target of rapamycin (mTOR) inhibitor rapamycin, whereas supplementation with the amino acid, leucine, activated S6K and rescued the stretch-induced activation of NF-P3/80 depleted of FAK. CONCLUSIONS: These findings demonstrate a critical role for the mTOR complex, downstream from FAK, in mediating the activation of cardiac fibroblasts in response to mechanical stress.


Assuntos
Fibroblastos/enzimologia , Quinase 1 de Adesão Focal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mecanotransdução Celular , Miocárdio/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Colágeno Tipo I/metabolismo , Ativação Enzimática , Fibroblastos/efeitos dos fármacos , Quinase 1 de Adesão Focal/genética , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Leucina/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Miocárdio/citologia , Oligopeptídeos/farmacologia , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Ratos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina , Sirolimo/farmacologia , Estresse Mecânico , Serina-Treonina Quinases TOR , Treonina , Fatores de Tempo , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo , Tirosina
9.
FEBS Lett ; 583(18): 2975-81, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19698715

RESUMO

Transient dephosphorylation of FAK at Tyr-397 is required for cell cycle withdrawal early on during myogenesis. Here, we show that upon serum starvation of C2C12 myoblasts, FAK is transiently dephosphorylated in parallel with SHP-2 activation and association with FAK. SHP-2 knockdown by RNA interference suppressed the transient upregulation of SHP-2 and dephosphorylation of FAK during myogenesis. Furthermore, depletion of SHP-2 retarded the cell cycle withdrawal and the differentiation of serum-starved myoblasts into myotubes. These data provide a mechanistic basis for the reduction in FAK activity in differentiating myoblasts, indicating that myogenesis is critically triggered by FAK/SHP-2 complex.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Desenvolvimento Muscular , Proteína Tirosina Fosfatase não Receptora Tipo 11/fisiologia , Transdução de Sinais , Animais , Ciclo Celular , Diferenciação Celular , Células Cultivadas , Camundongos , Músculo Esquelético/citologia , Mioblastos/citologia , Fosforilação , Regulação para Cima
10.
PLoS One ; 4(12): e8472, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20041152

RESUMO

BACKGROUND: The activation of the members of the myocyte enhancer factor-2 family (MEF2A, B, C and D) of transcription factors promotes cardiac hypertrophy and failure. However, the role of its individual components in the pathogenesis of cardiac hypertrophy remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated whether MEF2C plays a role in mediating the left ventricular hypertrophy by pressure overload in mice. The knockdown of myocardial MEF2C induced by specific small interfering RNA (siRNA) has been shown to attenuate hypertrophy, interstitial fibrosis and the rise of ANP levels in aortic banded mice. We detected that the depletion of MEF2C also results in lowered levels of both PGC-1alpha and mitochondrial DNA in the overloaded left ventricle, associated with enhanced AMP:ATP ratio. Additionally, MEF2C depletion was accompanied by defective activation of S6K in response to pressure overload. Treatment with the amino acid leucine stimulated S6K and suppressed the attenuation of left ventricular hypertrophy and fibrosis in the aforementioned aortic banded mice. CONCLUSION/SIGNIFICANCE: These findings represent new evidences that MEF2C depletion attenuates the hypertrophic responses to mechanical stress and highlight the potential of MEF2C to be a target for new therapies to cardiac hypertrophy and failure.


Assuntos
Inativação Gênica , Hipertrofia Ventricular Esquerda/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Regulação Miogênica/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , DNA Mitocondrial/genética , Hemodinâmica , Hipertrofia Ventricular Esquerda/fisiopatologia , Fatores de Transcrição MEF2 , Camundongos , Miocárdio/enzimologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Regulação Miogênica/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Serina-Treonina Quinases TOR , Pressão Ventricular/fisiologia
11.
Am J Physiol Regul Integr Comp Physiol ; 289(3): R862-70, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15890789

RESUMO

This study examined whether focal adhesion kinase (FAK) plays a role in the differentiation of C(2)C(12) myoblasts into myotubes. Differentiation of C(2)C(12) myoblasts induced by switch to differentiation culture medium was accompanied by a transient reduction of FAK phosphorylation at Tyr-397 (to approximately 50%, at 1 and 2 h), followed by an increase thereafter (to 240% up to 5 days), although FAK protein expression remained unchanged. FAK and phosphorylated FAK were found at the edge of lamellipodia in proliferating cells, whereas the later increase in FAK phosphorylation in differentiating cells was accompanied by its preferential location at the tip of well-organized actin stress fibers. Hyperexpression of FAK autophosphorylation site (Tyr-397) mutant (MT-FAK) reduced FAK phosphorylation at Tyr-397 in proliferating cells and was accompanied by reduction of cyclin D1 and increase of myogenin expression. These cells failed to progress to myotubes in differentiation medium. In contrast, hyperexpression of a wild-type FAK construction (WT-FAK) increased baseline and abolished the transient reduction of FAK phosphorylation at Tyr-397 in serum-starved C(2)C(12) cells. Cells transfected with WT-FAK failed to reduce cyclin D1 and to increase myogenin expression, as well as to progress to terminal differentiation in differentiation medium. These data indicate that FAK signaling plays a critical role in the control of cell cycle as well as in the progression of C(2)C(12) cells to terminal differentiation. Transient inhibition of FAK phosphorylation at Tyr-397 contributes to trigger the myogenic genetic program, but its later activation is also central to terminal differentiation into myotubes.


Assuntos
Diferenciação Celular/fisiologia , Mioblastos/citologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Proliferação de Células , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Camundongos , Desenvolvimento Muscular/fisiologia , Mutação , Fosforilação , Proteínas Tirosina Quinases/genética , Frações Subcelulares/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA