Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Circ Res ; 132(7): 849-863, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36876496

RESUMO

BACKGROUND: Removal of circulating plasma low-density lipoprotein cholesterol (LDL-C) by the liver relies on efficient endocytosis and intracellular vesicle trafficking. Increasing the availability of hepatic LDL receptors (LDLRs) remains a major clinical target for reducing LDL-C levels. Here, we describe a novel role for RNF130 (ring finger containing protein 130) in regulating plasma membrane availability of LDLR. METHODS: We performed a combination of gain-of-function and loss-of-function experiments to determine the effect of RNF130 on LDL-C and LDLR recycling. We overexpressed RNF130 and a nonfunctional mutant RNF130 in vivo and measured plasma LDL-C and hepatic LDLR protein levels. We performed in vitro ubiquitination assays and immunohistochemical staining to measure levels and cellular distribution of LDLR. We supplement these experiments with 3 separate in vivo models of RNF130 loss-of-function where we disrupted Rnf130 using either ASO (antisense oligonucleotides), germline deletion, or AAV CRISPR (adeno-associated virus clustered regularly interspaced short palindromic repeats) and measured hepatic LDLR and plasma LDL-C. RESULTS: We demonstrate that RNF130 is an E3 ubiquitin ligase that ubiquitinates LDLR resulting in redistribution of the receptor away from the plasma membrane. Overexpression of RNF130 decreases hepatic LDLR and increases plasma LDL-C levels. Further, in vitro ubiquitination assays demonstrate RNF130-dependent regulation of LDLR abundance at the plasma membrane. Finally, in vivo disruption of Rnf130 using ASO, germline deletion, or AAV CRISPR results in increased hepatic LDLR abundance and availability and decreased plasma LDL-C levels. CONCLUSIONS: Our studies identify RNF130 as a novel posttranslational regulator of LDL-C levels via modulation of LDLR availability, thus providing important insight into the complex regulation of hepatic LDLR protein levels.


Assuntos
Fígado , Receptores de LDL , LDL-Colesterol/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Fígado/metabolismo , Proteínas de Transporte/metabolismo , Ubiquitinação , Lipoproteínas LDL/metabolismo
2.
Nature ; 567(7747): 187-193, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814737

RESUMO

Dysregulation of lipid homeostasis is a precipitating event in the pathogenesis and progression of hepatosteatosis and metabolic syndrome. These conditions are highly prevalent in developed societies and currently have limited options for diagnostic and therapeutic intervention. Here, using a proteomic and lipidomic-wide systems genetic approach, we interrogated lipid regulatory networks in 107 genetically distinct mouse strains to reveal key insights into the control and network structure of mammalian lipid metabolism. These include the identification of plasma lipid signatures that predict pathological lipid abundance in the liver of mice and humans, defining subcellular localization and functionality of lipid-related proteins, and revealing functional protein and genetic variants that are predicted to modulate lipid abundance. Trans-omic analyses using these datasets facilitated the identification and validation of PSMD9 as a previously unknown lipid regulatory protein. Collectively, our study serves as a rich resource for probing mammalian lipid metabolism and provides opportunities for the discovery of therapeutic agents and biomarkers in the setting of hepatic lipotoxicity.


Assuntos
Metabolismo dos Lipídeos/genética , Lipídeos/análise , Lipídeos/genética , Proteômica , Animais , Células HEK293 , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/sangue , Lipídeos/classificação , Fígado/química , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Obesidade/genética , Obesidade/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
3.
J Lipid Res ; 63(1): 100153, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808192

RESUMO

We previously reported that adding a concentrate of transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F) to a Western diet (WD) ameliorated systemic inflammation. To determine the mechanism(s) responsible for these observations, Ldlr-/- mice were fed chow, a WD, or WD plus Tg6F. We found that a WD altered the taxonomic composition of bacteria in jejunum mucus. For example, Akkermansia muciniphila virtually disappeared, while overall bacteria numbers and lipopolysaccharide (LPS) levels increased. In addition, gut permeability increased, as did the content of reactive oxygen species and oxidized phospholipids in jejunum mucus in WD-fed mice. Moreover, gene expression in the jejunum decreased for multiple peptides and proteins that are secreted into the mucous layer of the jejunum that act to limit bacteria numbers and their interaction with enterocytes including regenerating islet-derived proteins, defensins, mucin 2, surfactant A, and apoA-I. Following WD, gene expression also decreased for Il36γ, Il23, and Il22, cytokines critical for antimicrobial activity. WD decreased expression of both Atoh1 and Gfi1, genes required for the formation of goblet and Paneth cells, and immunohistochemistry revealed decreased numbers of goblet and Paneth cells. Adding Tg6F ameliorated these WD-mediated changes. Adding oxidized phospholipids ex vivo to the jejunum from mice fed a chow diet reproduced the changes in gene expression in vivo that occurred when the mice were fed WD and were prevented with addition of 6F peptide. We conclude that Tg6F ameliorates the WD-mediated increase in oxidized phospholipids that cause changes in jejunum mucus, which induce dysbiosis and systemic inflammation.


Assuntos
Disbiose
4.
Arterioscler Thromb Vasc Biol ; 40(2): 412-425, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31852219

RESUMO

OBJECTIVE: Atherosclerosis is a leading cause of death in developed countries. MicroRNAs act as fine-tuners of gene expression and have been shown to have important roles in the pathophysiology and progression of atherosclerosis. We, and others, previously demonstrated that microRNA-144 (miR-144) functions to post-transcriptionally regulate ABCA1 (ATP binding cassette transporter A1) and plasma HDL (high-density lipoprotein) cholesterol levels. Here, we explore how miR-144 inhibition may protect against atherosclerosis. Approach and Results: We demonstrate that miR-144 silencing reduced atherosclerosis in male, but not female low-density lipoprotein receptor null (Ldlr-/-) mice. MiR-144 antagonism increased circulating HDL cholesterol levels, remodeled the HDL particle, and enhanced reverse cholesterol transport. Notably, the effects on HDL and reverse cholesterol transport were more pronounced in male mice suggesting sex-specific differences may contribute to the effects of silencing miR-144 on atherosclerosis. As a molecular mechanism, we identify the oxysterol metabolizing enzyme CYP7B1 (cytochrome P450 enzyme 7B1) as a miR-144 regulated gene in male, but not female mice. Consistent with miR-144-dependent changes in CYP7B1 activity, we show decreased levels of 27-hydroxycholesterol, a known proatherogenic sterol and the endogenous substrate for CYP7B1 in male, but not female mice. CONCLUSIONS: Our data demonstrate silencing miR-144 has sex-specific effects and that treatment with antisense oligonucleotides to target miR-144 might result in enhancements in reverse cholesterol transport and oxysterol metabolism in patients with cardiovascular disease.


Assuntos
Aterosclerose/genética , Colesterol/metabolismo , Inativação Gênica , MicroRNAs/genética , RNA/genética , Animais , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Western Blotting , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/biossíntese , Fatores Sexuais
5.
Clin Sci (Lond) ; 130(3): 183-92, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26543049

RESUMO

Maternal obesity is associated with prolonged and dysfunctional labour and emergency caesarean section, but the mechanisms are unknown. The present study investigated the effects of an adiposity-inducing high-fat, high-cholesterol (HFHC) diet on uterine contractile-associated protein (CAP) expression and ex vivo uterine contractility in term non-labouring (TNL) and term labouring (TL) rats. Female rats were fed either control chow (CON n=20) or HFHC (n=20) diet 6 weeks before conception and during pregnancy. On gestational day 21 (TNL) or day 22 (TL) CON and HFHC (n=10) rats were killed to determine plasma cholesterol, triacylglycerol and progesterone concentrations and collection of myometrium for contractility studies and expression of CAPs caveolin-1 (Cav-1), connexin-43 (CX-43) and it's phosphorylated form (pCX-43), oxytocin receptor (OXTR) and cyclooxygenase-2 (COX-2). HFHC feeding increased visceral fat (P≤0.001), plasma cholesterol (P≤0.001) and triacylglycerol (P=0.039) concentrations. Stage of labour effected uterine expression of CAV-1 (P<0.02), pCX43 and COX-2 (both P<0.03). CAV-1 and pCX43 decreased but COX-2 increased with parturition. Significant diet- and labour-stage interactions were evident for CX-43 and pCX43 (P<0.03 and P<0.004 respectively). CX-43 decreased with TL in HFHC animals but was unaltered in CON. pCX-43 fell with labour in CON but remained high in HFHC. OXTR expression was significantly higher in HFHC compared with CON animals (P<0.03). Progesterone was higher in HFHC rats at term (P<0.014) but fell significantly with labour to similar concentrations as CON. Contractility studies identified synchronous contractions of stable amplitude in lean animals, but unstable asynchronous contractions with obesity. Uterine dose response to oxytocin was blunted during labour in HFHC rats with a log EC50 of -8.84 compared with -10.25 M in CON for integral activity (P<0.05). In conclusion, our adiposity model exhibits adverse effects on contractile activity during labour that can be investigated further to unravel the mechanisms causing uterine dystocia in obese women.


Assuntos
Caveolina 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Obesidade/metabolismo , Complicações na Gravidez/metabolismo , Contração Uterina , Útero/metabolismo , Animais , Colesterol na Dieta/efeitos adversos , Conexina 43/metabolismo , Proteínas Contráteis/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dinoprosta , Modelos Animais de Doenças , Feminino , Lipídeos/sangue , Tamanho da Ninhada de Vivíparos , Masculino , Obesidade/etiologia , Ocitocina , Gravidez , Progesterona/sangue , Ratos Wistar , Aumento de Peso
6.
FASEB J ; 28(11): 4880-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25077559

RESUMO

This paper identifies a common nutritional pathway relating maternal through to fetal protein-energy malnutrition (PEM) and compromised fetal kidney development. Thirty-one twin-bearing sheep were fed either a control (n=15) or low-protein diet (n=16, 17 vs. 8.7 g crude protein/MJ metabolizable energy) from d 0 to 65 gestation (term, ∼ 145 d). Effects on the maternal and fetal nutritional environment were characterized by sampling blood and amniotic fluid. Kidney development was characterized by histology, immunohistochemistry, vascular corrosion casts, and molecular biology. PEM had little measureable effect on maternal and fetal macronutrient balance (glucose, total protein, total amino acids, and lactate were unaffected) or on fetal growth. PEM decreased maternal and fetal urea concentration, which blunted fetal ornithine availability and affected fetal hepatic polyamine production. For the first time in a large animal model, we associated these nutritional effects with reduced micro- but not macrovascular development in the fetal kidney. Maternal PEM specifically impacts the fetal ornithine cycle, affecting cellular polyamine metabolism and microvascular development of the fetal kidney, effects that likely underpin programming of kidney development and function by a maternal low protein diet.


Assuntos
Desenvolvimento Fetal/fisiologia , Rim/irrigação sanguínea , Microvasos/embriologia , Ornitina/metabolismo , Desnutrição Proteico-Calórica/metabolismo , Animais , Feminino , Rim/embriologia , Gravidez , Prenhez , Ovinos
7.
Nat Metab ; 5(1): 165-181, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36646756

RESUMO

In cell models, changes in the 'accessible' pool of plasma membrane (PM) cholesterol are linked with the regulation of endoplasmic reticulum sterol synthesis and metabolism by the Aster family of nonvesicular transporters; however, the relevance of such nonvesicular transport mechanisms for lipid homeostasis in vivo has not been defined. Here we reveal two physiological contexts that generate accessible PM cholesterol and engage the Aster pathway in the liver: fasting and reverse cholesterol transport. During fasting, adipose-tissue-derived fatty acids activate hepatocyte sphingomyelinase to liberate sequestered PM cholesterol. Aster-dependent cholesterol transport during fasting facilitates cholesteryl ester formation, cholesterol movement into bile and very low-density lipoprotein production. During reverse cholesterol transport, high-density lipoprotein delivers excess cholesterol to the hepatocyte PM through scavenger receptor class B member 1. Loss of hepatic Asters impairs cholesterol movement into feces, raises plasma cholesterol levels and causes cholesterol accumulation in peripheral tissues. These results reveal fundamental mechanisms by which Aster cholesterol flux contributes to hepatic and systemic lipid homeostasis.


Assuntos
Colesterol , Fígado , Colesterol/metabolismo , Transporte Biológico/fisiologia , Fígado/metabolismo , Homeostase , Ácidos Graxos/metabolismo
8.
Nat Commun ; 13(1): 6661, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333379

RESUMO

Parkin, an E3 ubiquitin ligase, plays an essential role in mitochondrial quality control. However, the mechanisms by which Parkin connects mitochondrial homeostasis with cellular metabolism in adipose tissue remain unclear. Here, we demonstrate that Park2 gene (encodes Parkin) deletion specifically from adipose tissue protects mice against high-fat diet and aging-induced obesity. Despite a mild reduction in mitophagy, mitochondrial DNA content and mitochondrial function are increased in Park2 deficient white adipocytes. Moreover, Park2 gene deletion elevates mitochondrial biogenesis by increasing Pgc1α protein stability through mitochondrial superoxide-activated NAD(P)H quinone dehydrogenase 1 (Nqo1). Both in vitro and in vivo studies show that Nqo1 overexpression elevates Pgc1α protein level and mitochondrial DNA content and enhances mitochondrial activity in mouse and human adipocytes. Taken together, our findings indicate that Parkin regulates mitochondrial homeostasis by balancing mitophagy and Pgc1α-mediated mitochondrial biogenesis in white adipocytes, suggesting a potential therapeutic target in adipocytes to combat obesity and obesity-associated disorders.


Assuntos
Mitofagia , Biogênese de Organelas , Camundongos , Humanos , Animais , Mitofagia/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Adipócitos Brancos/metabolismo , Adiposidade , Ubiquitina-Proteína Ligases/metabolismo , Obesidade/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
9.
Cell Metab ; 33(8): 1671-1684.e4, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34270928

RESUMO

FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids.


Assuntos
Ácidos e Sais Biliares , Hepatopatia Gordurosa não Alcoólica , Animais , Bile , Ácidos e Sais Biliares/metabolismo , Humanos , Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fosfatidato Fosfatase/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
10.
Sci Rep ; 9(1): 10134, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300679

RESUMO

Exposure to maternal obesity during early development programmes adverse metabolic health in rodent offspring. We assessed the relative contributions of obesity during pregnancy and suckling on metabolic health post-weaning. Wistar rat offspring exposed to control (C) or cafeteria diet (O) during pregnancy were cross-fostered to dams on the same (CC, OO) or alternate diet during suckling (CO, OC) and weaned onto standard chow. Measures of offspring metabolic health included growth, adipose tissue mass, and 12-week glucose and insulin concentrations during an intraperitoneal glucose tolerance test (ipGTT). Exposure to maternal obesity during lactation was a driver for reduced offspring weight post-weaning, higher fasting blood glucose concentrations and greater gonadal adiposity (in females). Males displayed insulin resistance, through slower glucose clearance despite normal circulating insulin and lower mRNA expression of PIK3R1 and PIK3CB in gonadal fat and liver respectively. In contrast, maternal obesity during pregnancy up-regulated the insulin signalling genes IRS2, PIK3CB and SREBP1-c in skeletal muscle and perirenal fat, favouring insulin sensitivity. In conclusion exposure to maternal obesity during lactation programmes offspring adiposity and insulin resistance, overriding exposure to an optimal nutritional environment in utero, which cannot be alleviated by a nutritionally balanced post-weaning diet.


Assuntos
Adiposidade/fisiologia , Resistência à Insulina , Obesidade Materna , Tecido Adiposo/fisiologia , Animais , Animais Lactentes , Composição Corporal , Peso Corporal , Dieta , Feminino , Insulina/metabolismo , Lactação , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Fosfatidilinositol 3-Quinases/genética , Gravidez , Ratos Wistar , Desmame
11.
Sci Rep ; 9(1): 14173, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578441

RESUMO

Exposure to maternal obesity during early-life can have adverse consequences for offspring growth and adiposity. We aimed to assess the relative contributions of exposure to maternal obesity, induced by a highly varied cafeteria diet, during pregnancy and lactation on these measures in rat offspring prior to weaning. Female Wistar rats were fed either a control (C) or cafeteria diet (O) for 8 weeks before mating, throughout pregnancy and lactation. Offspring were cross-fostered at birth to a dam on the same (CC,OO) or alternate diet prior to birth (CO,OC). Feeding a cafeteria diet based on 40 different foods, was associated with a sustained period of elevated energy intake before birth and during lactation (up to 1.7-fold), through increased sugar, total fat and saturated fat intake, and lower protein consumption. Cafeteria fed dams sustained greater weight than animals fed a control chow diet and greater perirenal adiposity by the end of lactation. Exposure to obesity during pregnancy was associated with lower offspring birth weight and body weight in early-postnatal life. In contrast, exposure during lactation alone reduced offspring weight but increased adiposity in male CO offspring before weaning. This research highlights that exposure to maternal obesity during lactation alone can programme adiposity in a sex specific manner.


Assuntos
Adiposidade , Peso ao Nascer , Dieta Hiperlipídica/efeitos adversos , Açúcares da Dieta/efeitos adversos , Obesidade/patologia , Complicações na Gravidez/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Feminino , Lactação , Masculino , Obesidade/etiologia , Gravidez , Complicações na Gravidez/etiologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos , Ratos Wistar , Desmame
12.
J Clin Invest ; 127(10): 3741-3754, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28891815

RESUMO

Bile acids function not only as detergents that facilitate lipid absorption but also as signaling molecules that activate the nuclear receptor farnesoid X receptor (FXR). FXR agonists are currently being evaluated as therapeutic agents for a number of hepatic diseases due to their lipid-lowering and antiinflammatory properties. FXR is also essential for maintaining bile acid homeostasis and prevents the accumulation of bile acids. Elevated bile acids activate FXR, which in turn switches off bile acid synthesis by reducing the mRNA levels of bile acid synthesis genes, including cholesterol 7α-hydroxylase (Cyp7a1). Here, we show that FXR activation triggers a rapid posttranscriptional mechanism to degrade Cyp7a1 mRNA. We identified the RNA-binding protein Zfp36l1 as an FXR target gene and determined that gain and loss of function of ZFP36L1 reciprocally regulate Cyp7a1 mRNA and bile acid levels in vivo. Moreover, we found that mice lacking hepatic ZFP36L1 were protected from diet-induced obesity and steatosis. The reduced adiposity and antisteatotic effects observed in ZFP36L1-deficient mice were accompanied by impaired lipid absorption that was consistent with altered bile acid metabolism. Thus, the ZFP36L1-dependent regulation of bile acid metabolism is an important metabolic contributor to obesity and hepatosteatosis.


Assuntos
Ácidos e Sais Biliares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Ácidos e Sais Biliares/genética , Fator 1 de Resposta a Butirato , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Camundongos , Camundongos Knockout , Proteínas Nucleares/deficiência , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
13.
Biol Sex Differ ; 7: 64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27980712

RESUMO

BACKGROUND: Sexual dimorphism in blood pressure has been associated with differential expression of the angiotensin II (AII) receptors and with activity of the nervous system. It is generally accepted that ageing affects kidney function as well as autonomic nervous system and hormonal balance. Given that hypertension is more prevalent in men than women until women reach their seventh decade, we hypothesised that females would be relatively protected from adverse effects of ageing compared to males and that this would be mediated by the protective effect of ovarian steroids. METHODS: Intact and gonadectomised male and female normotensive Wistar rats aged 6, 12 and 18 months were used to study renal function, blood pressure, heart rate, and blood pressure variability. RESULTS: We observed that intact females had lower levels of proteinuria and higher (12.5%) creatinine clearance compared to intact males and that this difference was abolished by castration but not by ovariectomy. Ovariectomy resulted in a change by 9% in heart rate, resulting in similar cardiovascular parameters to those observed in males or gonadectomised males. Spectral analysis of systolic blood pressure revealed that high-frequency power spectra were significantly elevated in the females vs. males and were reduced by ovariectomy. CONCLUSIONS: Taken altogether, the results show that females are protected from age-related declining renal function and to a lesser extent from rising blood pressure in comparison to males. Whilst ovariectomy had some deleterious effects in females, the strongest effects were associated with gonadectomy in males, suggesting a damaging effect of male hormones.

14.
Physiol Rep ; 3(4)2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25876907

RESUMO

Advanced maternal age of first time pregnant mothers is associated with prolonged and dysfunctional labor and significant risk of emergency cesarean section. We investigated the influence of maternal age on myometrial contractility, expression of contractile associated proteins (CAPs), and global gene expression in the parturient uterus. Female Wistar rats either 8 (YOUNG n = 10) or 24 (OLDER n = 10) weeks old were fed laboratory chow, mated, and killed during parturition. Myometrial strips were dissected to determine contractile activity, cholesterol (CHOL) and triglycerides (TAG) content, protein expression of connexin-43 (GJA1), prostaglandin-endoperoxide synthase 2 (PTGS2), and caveolin 1 (CAV-1). Maternal plasma concentrations of prostaglandins PGE2, PGF2α, and progesterone were determined by RIA. Global gene expression in uterine samples was compared using Affymetrix Genechip Gene 2.0 ST arrays and Ingenuity Pathway analysis (IPA). Spontaneous contractility in myometrium exhibited by YOUNG rats was threefold greater than OLDER animals (P < 0.027) but maternal age had no significant effect on myometrial CAP expression, lipid profiles, or pregnancy-related hormones. OLDER myometrium increased contractile activity in response to PGF2α, phenylephrine, and carbachol, a response absent in YOUNG rats (all P < 0.002). Microarray analysis identified that maternal age affected expression of genes related to immune and inflammatory responses, lipid transport and metabolism, steroid metabolism, tissue remodeling, and smooth muscle contraction. In conclusion YOUNG laboring rat myometrium seems primed to contract maximally, whereas activity is blunted in OLDER animals and requires stimulation to meet contractile potential. Further work investigating maternal age effects on myometrial function is required with focus on lipid metabolism and inflammatory pathways.

15.
Physiol Rep ; 3(4)2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25902787

RESUMO

The aging kidney exhibits a progressive decline in glomerular filtration rate, accompanied by inflammatory and oxidative damage. We hypothesized that accelerated, age-related progression of renal injury is ovarian hormones-dependant. To address this we used an established model of developmentally programmed accelerated renal aging in the rat, superimposed by ovariectomy to assess interactions between ovarian hormones and the aging process. Under our experimental conditions, we found that kidney function worsens with age, that is GFR reduces over 18 month analyzed time-course and this was worsened by fetal exposure to maternal low-protein diet and absence of estrogen. Reduction in GFR was followed by increases in albuminuria, proteinuria, inflammatory markers, and tissue carbonyls, all suggesting inflammatory response and oxidative stress. This was associated with changes in AGTR2 expression which was greater at 18 months of age compared to earlier time points, but in MLP offspring only. Our studies show an influence of ovarian hormones on programmed accelerated renal aging and the AGTR2 across the lifespan. The main findings are that ovariectomy is a risk factor for increased aging-related renal injury and that this and oxidative damage might be related to changes in AGTR2 expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA