Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 9(12): e1003978, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367271

RESUMO

During meiosis, repair of programmed DNA double-strand breaks (DSBs) by recombination promotes pairing of homologous chromosomes and their connection by crossovers. Two DNA strand-exchange proteins, Rad51 and Dmc1, are required for meiotic recombination in many organisms. Studies in budding yeast imply that Rad51 acts to regulate Dmc1's strand exchange activity, while its own exchange activity is inhibited. However, in a dmc1 mutant, elimination of inhibitory factor, Hed1, activates Rad51's strand exchange activity and results in high levels of recombination without participation of Dmc1. Here we show that Rad51-mediated meiotic recombination is not subject to regulatory processes associated with high-fidelity chromosome segregation. These include homolog bias, a process that directs strand exchange between homologs rather than sister chromatids. Furthermore, activation of Rad51 does not effectively substitute for Dmc1's chromosome pairing activity, nor does it ensure formation of the obligate crossovers required for accurate homolog segregation. We further show that Dmc1's dominance in promoting strand exchange between homologs involves repression of Rad51's strand-exchange activity. This function of Dmc1 is independent of Hed1, but requires the meiotic kinase, Mek1. Hed1 makes a relatively minor contribution to homolog bias, but nonetheless this is important for normal morphogenesis of synaptonemal complexes and efficient crossing-over especially when DSB numbers are decreased. Super-resolution microscopy shows that Dmc1 also acts to organize discrete complexes of a Mek1 partner protein, Red1, into clusters along lateral elements of synaptonemal complexes; this activity may also contribute to homolog bias. Finally, we show that when interhomolog bias is defective, recombination is buffered by two feedback processes, one that increases the fraction of events that yields crossovers, and a second that we propose involves additional DSB formation in response to defective homolog interactions. Thus, robust crossover homeostasis is conferred by integrated regulation at initiation, strand-exchange and maturation steps of meiotic recombination.


Assuntos
Proteínas de Ciclo Celular/genética , Troca Genética , Proteínas de Ligação a DNA/genética , Meiose/genética , Rad51 Recombinase/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Pareamento Cromossômico/genética , Segregação de Cromossomos/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Homeostase , Recombinação Homóloga/genética , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Sinaptonêmico/genética
2.
J Vis Exp ; (160)2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32568244

RESUMO

Nearly universal among organisms, circadian rhythms coordinate biological activity to earth's orbit around the sun. To identify factors creating this rhythm and to understand the resulting outputs, entrainment of model organisms to defined circadian time-points is required. Here we detail a procedure to entrain many Drosophila to a defined circadian rhythm. Furthermore, we detail post-entrainment steps to prepare samples for immunofluorescence, nucleic acid, or protein extraction-based analysis.


Assuntos
Ritmo Circadiano/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/patogenicidade , Animais
3.
Biotechniques ; 67(6): 299-305, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31687836

RESUMO

Drosophila melanogaster possesses a complex nervous system, regulating sophisticated behavioral outputs, that serves as a powerful model for dissecting molecular mechanisms underlying neuronal function and neurodegenerative disease. Immunofluorescence techniques provide a way to visualize the spatiotemporal organization of these networks, permitting observation of their development, functional location, remodeling and, eventually, degradation. However, basic immunostaining techniques do not always result in efficient antibody penetration through the brain, and supplemental techniques to enhance permeability can compromise structural integrity, altering spatial organization. Here, slow freezing of brains is shown to facilitate antibody permeability without loss of antibody specificity or brain integrity. To demonstrate the advantages of this freezing technique, the results of two commonly used permeation methods - detergent-based and partial proteolytic digestion - are compared.


Assuntos
Encéfalo/metabolismo , Drosophila melanogaster/metabolismo , Imunofluorescência/métodos , Neurônios/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Congelamento , Doenças Neurodegenerativas/metabolismo
4.
Elife ; 82019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31348003

RESUMO

Atxn7, a subunit of SAGA chromatin remodeling complex, is subject to polyglutamine expansion at the amino terminus, causing spinocerebellar ataxia type 7 (SCA7), a progressive retinal and neurodegenerative disease. Within SAGA, the Atxn7 amino terminus anchors Non-stop, a deubiquitinase, to the complex. To understand the scope of Atxn7-dependent regulation of Non-stop, substrates of the deubiquitinase were sought. This revealed Non-stop, dissociated from Atxn7, interacts with Arp2/3 and WAVE regulatory complexes (WRC), which control actin cytoskeleton assembly. There, Non-stop countered polyubiquitination and proteasomal degradation of WRC subunit SCAR. Dependent on conserved WRC interacting receptor sequences (WIRS), Non-stop augmentation increased protein levels, and directed subcellular localization, of SCAR, decreasing cell area and number of protrusions. In vivo, heterozygous mutation of SCAR did not significantly rescue knockdown of Atxn7, but heterozygous mutation of Atxn7 rescued haploinsufficiency of SCAR.


Assuntos
Citoesqueleto de Actina/metabolismo , Ataxina-7/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Endopeptidases/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Regulação da Expressão Gênica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas
5.
Science ; 337(6099): 1222-5, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22955832

RESUMO

Meiotic recombination in budding yeast requires two RecA-related proteins, Rad51 and Dmc1, both of which form filaments on DNA capable of directing homology search and catalyzing formation of homologous joint molecules (JMs) and strand exchange. With use of a separation-of-function mutant form of Rad51 that retains filament-forming but not JM-forming activity, we show that the JM activity of Rad51 is fully dispensable for meiotic recombination. The corresponding mutation in Dmc1 causes a profound recombination defect, demonstrating Dmc1's JM activity alone is responsible for meiotic recombination. We further provide biochemical evidence that Rad51 acts with Mei5-Sae3 as a Dmc1 accessory factor. Thus, Rad51 is a multifunctional protein that catalyzes recombination directly in mitosis and indirectly, via Dmc1, during meiosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose , Rad51 Recombinase/metabolismo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Rad51 Recombinase/química , Rad51 Recombinase/genética , Recombinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
Dev Biol ; 289(1): 229-42, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16313898

RESUMO

Histone proteins play integral roles in chromatin structure and function. Histones are subject to several types of posttranslational modifications, including acetylation, which can produce transcriptional activation. The converse, histone deacetylation, is mediated by histone deacetylases (HDACs) and often is associated with transcriptional silencing. We identified a new mutation, cw2, in the Caenorhabditis elegans hda-1 gene, which encodes a histone deacetylase. Previous studies showed that a mutation in hda-1, e1795, or reduction of hda-1 RNA by RNAi causes defective vulval and gonadal development leading to sterility. The hda-1(cw2) mutation causes defective vulval development and reduced fertility, like hda-1(e1795), albeit with reduced severity. Unlike the previously reported hda-1 mutation, hda-1(cw2) mutants are viable as homozygotes, although many die as embryos or larvae, and are severely uncoordinated. Strikingly, in hda-1(cw2) mutants, axon pathfinding is defective; specific axons often appear to wander randomly or migrate in the wrong direction. In addition, the long range migrations of three neuron types and fasciculation of the ventral nerve cord are defective. Together, our studies define a new role for HDA-1 in nervous system development, and provide the first evidence for HDAC function in regulating neuronal axon guidance.


Assuntos
Axônios/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/crescimento & desenvolvimento , Movimento Celular , Histona Desacetilases/fisiologia , Sistema Nervoso/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Movimento Celular/genética , Dosagem de Genes , Expressão Gênica , Histona Desacetilases/análise , Histona Desacetilases/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação de Sentido Incorreto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA