RESUMO
Entamoeba histolytica (E. histolytica) exhibits a remarkable capacity to respond to thermal shock stress through a sophisticated genetic regulation mechanism. This process is carried out via Heat Shock Response Elements (HSEs), which are recognized by Heat Shock Transcription Factors (EhHSTFs), enabling fine and precise control of gene expression. Our study focused on screening for HSEs in the promoters of the E. histolytica genome, specifically analyzing six HSEs, including Ehpgp5, EhrabB1, EhrabB4, EhrabB5, Ehmlbp, and Ehhsp100. We discovered 2578 HSEs, with 1412 in promoters of hypothetical genes and 1166 in coding genes. We observed that a single promoter could contain anywhere from one to five HSEs. Gene ontology analysis revealed the presence of HSEs in essential genes for the amoeba, including cysteine proteinases, ribosomal genes, Myb family DNA-binding proteins, and Rab GTPases, among others. Complementarily, our molecular docking analyses indicate that these HSEs are potentially recognized by EhHSTF5, EhHSTF6, and EhHSTF7 factors in their trimeric conformation. These findings suggest that E. histolytica has the capability to regulate a wide range of critical genes via HSE-EhHSTFs, not only for thermal stress response but also for vital functions of the parasite. This is the first comprehensive study of HSEs in the genome of E. histolytica, significantly contributing to the understanding of its genetic regulation and highlighting the complexity and precision of this mechanism in the parasite's survival.
Assuntos
Entamoeba histolytica , Entamoeba histolytica/genética , Entamoeba histolytica/metabolismo , Simulação de Acoplamento Molecular , Regiões Promotoras Genéticas , Resposta ao Choque Térmico/genética , Regulação da Expressão GênicaRESUMO
BACKGROUND: Mutations in the BRCA1 and BRCA2 genes constitute a risk factor for breast cancer development. BRCA mutation research has been an active field since the discovery of the genes, and new mutations in both genes are constantly described and classified according to several systems. AIM: We intend to provide an overview of the current state of BRCA1 and BRCA2 mutation description and classification. We wanted to know whether there was a trend towards a more frequently described mutation type and what the proportion of pathogenic mutations was. RESULTS: We found that, although new mutations are described each year as reflected in current database records, very few of them are reported in papers. Classification systems are highly heterogeneous and a consensus among them is still under development. Regarding their function, a large number of mutations are yet to be analyzed, a very complex task, due to the great number of possible variations and their diverse effect in the BRCA gene functions. After individual analysis, many variants of unknown significance turn out to be pathogenic, and many can disrupt interactions with other proteins involved in mechanisms such as DNA damage repair pathways. Recent data suggest that looking for mutation patterns or combinations would shed a wider light on BRCA-derived cancer susceptibility in the upcoming years.