RESUMO
BACKGROUND: A synchrotron-based Fourier transform infrared micro-spectrometer (µ-FTIR) allows the spatial determination of lipids across the different layers of ethnic hairs and differentiates between the lipid order arrangement and quantity. MATERIALS AND METHODS: The three ethnic fibers were delipidized, the lipid extracts were characterized, and the delipidized fibers were studied by dynamic vapor sorption experiments (DVS) and FTIR-synchrotron techniques. RESULTS: The average spectra from the different hair regions exhibited the most intense CH2 sym peaks on the medulla, followed by those from the cuticle and cortex for all hairs of different ethnicities. Differences in the lipid fraction of the three hair types have been observed, and they can explain some barrier properties. African virgin hair was demonstrated to have more lipids mainly in the medulla, which implies an important hydrophobicity with low hysteresis between absorption and desorption water vapor processes. In addition, these lipids are highly disordered, mainly in the cuticle, which can be related to its high water vapor diffusion. Asian and Caucasian virgin hairs presented a similar lipid order in all regions, with similar diffusion coefficients. Results indicate that the higher order of the lipid bilayer hinders water permeation kinetics in some way. CONCLUSION: The differences in the presence and organization of the lipids in the different regions of the African hair can account for its differentiation with regards to moisturization and swelling from the other types of fibers.
Assuntos
Lipídeos , Síncrotrons , Análise de Fourier , Cabelo , Humanos , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
BACKGROUND: The aim of this study is to characterize and detect the possible differences among the hair of three different ethnicities: African, Asiatic and Caucasian. MATERIALS AND METHODS: The differences in water adsorption/desorption behaviour of hairs were studied using a thermogravimetric balance and compared with the analysis of the lipid distribution and order using synchrotron-based Fourier transform infrared microspectroscopy. Besides, the thermal thermogravimetry (TG) and differential scanning calorimetry (DSC) analyses on human hair were executed. RESULTS: Differences in the diffusion coefficients were evidenced. African hair exhibited increased permeability. Caucasian hair displayed a higher water absorption capability with increasing humidity but with a slow diffusion rate. The Asian fibre appeared to be more resistant to hydration changes. The spectroscopic analysis showed notable differences in the cuticle lipids. The African cuticle exhibited more lipids with a lower order bilayer. The outmost layer of Caucasian fibres contained more ordered lipids, and the Asian fibres show a very low level of lipids on the cuticle region. The DSC results indicate no difference in the thermal stability and TG showed higher water content in the Caucasian fibre and a possible lower cysteine disulphide bond content in the African hair matrix. CONCLUSION: The triple approach demonstrated the permeability differences among the ethnic fibres and their correlation with the properties of their cuticle lipids. These differences could have particular relevance to the hair care cosmetic market.
Assuntos
Povo Asiático , População Negra , Cabelo , População Branca , Cabelo/química , Folículo Piloso , Humanos , LipídeosRESUMO
BACKGROUND: The main objective of this study was to determine the lipid profile of brown and white Caucasian hair fibres and the effects of lipids on the properties of fibres. MATERIALS AND METHODS: To determine the structures of white and brown hair lipid bilayers, cross sections of fibres of both hair types were examined using synchrotron-based µ-FTIR mapping. Dynamic vapour sorption (DVS) analyses were also performed to determine the differences in the barrier function of both fibres. RESULTS: Spatial identification of lipids showed that a great amount of lipids was present in the medulla of fibres of both hair types, but important differences were also observed between cuticles of the different fibres. The cuticle of a white hair fibre showed a significant decrease in its lipid content, but did not show differences in the lateral packing order with respect to the cuticle of a brown hair fibre. The cortex and medulla of the white hair fibre also exhibited a significant decrease in its lipid content but with a higher lateral packing order than brown hair. Using DVS analysis, it was found that the water dynamics of white hair fibres differed from those of brown hair fibres, showing a decrease in their total capacity to absorb water and an increase in the velocity of the exchange of water with the environment. CONCLUSION: The results of both techniques demonstrated a high correlation between the characteristics of the lipids located in the cuticle and the water dynamics of the fibres.
Assuntos
Cor de Cabelo , Cabelo , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Humanos , Cabelo/química , Cabelo/fisiologia , Cabelo/ultraestrutura , Cor de Cabelo/fisiologia , Hidrodinâmica , Metabolismo dos Lipídeos , Lipídeos/sangue , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Síncrotrons , Água/metabolismoRESUMO
BACKGROUND/AIMS: Wool wax is a soft, yellow, waxy substance that is secreted by the sebaceous glands of sheep. The purpose of wool wax is to waterproof and protect the wool. Chemically, wool wax is a complex mixture of esters, fatty acids, and alcohols. Wool waxes with different prop-erties can be obtained by following different extraction methodologies. METHODS: Two differently extracted wool waxes are compared in this study. Their effectiveness in mimicking the properties of skin lipids is evaluated. In addition, the lipid compositions and thermotropic behaviours of the 2 differently extracted wool waxes were evaluated. RESULTS: The solvent-extracted wool wax was found to have a significantly higher polar lipid content than that of the water-extracted wool wax. This increase in the polar character of the solvent-extracted wool wax was also demonstrated by increased values of transition and degradation temperatures in the differential scanning calorimetry and thermogravimetric analyses, respectively. In addition, solvent-extracted wool wax demonstrated the ability to reinforce stratum corneum lipids, which led to improved skin barrier function. CONCLUSIONS: The suitability of the solvent-extracted wool wax for application in the preparation of cosmetics and dermatological products was demonstrated.
Assuntos
Lipídeos/química , Pele/química , Ceras/química , Lã/química , Adulto , Animais , Varredura Diferencial de Calorimetria , Feminino , Humanos , Ovinos , Solventes/química , Temperatura , Termogravimetria , Água/química , Ceras/isolamento & purificaçãoRESUMO
The primary barrier to body water loss and influx of exogenous substances resides in the stratum corneum (SC). The barrier function of the SC is provided by patterned lipid lamellae localized to the extracellular spaces between corneocytes. SC lipids are intimately involved in maintaining the barrier function. It is generally accepted that solvents induce cutaneous barrier disruption. The main aim of this work is the evaluation of the different capability of two solvent systems on inducing changes in the SC barrier function. SC lipid modifications will be evaluated by lipid analysis, water sorption/desorption experiments, confocal-Raman visualization and FSTEM images. The amount of SC lipids extracted by chloroform/methanol was significantly higher than those extracted by acetone. DSC results indicate that acetone extract has lower temperature phase transitions than chloroform/methanol extract. The evaluation of the kinetics of the moisture uptake and loss demonstrated that when SC is treated with chloroform/methanol the resultant sample reach equilibrium in shorter times indicating a deterioration of the SC tissue with higher permeability. Instead, acetone treatment led to a SC sample with a decreased permeability thus with an improved SC barrier function. Confocal-Raman and FSTEM images demonstrated the absence of the lipids on SC previously treated with chloroform/methanol. However, they were still present when the SC was treated with acetone. Results obtained with all the different techniques used were consistent. The results obtained increases the knowledge of the interaction lipid-solvent, being this useful for understanding the mechanism of reparation of damaged skin.
Assuntos
Epiderme/efeitos dos fármacos , Absorção Cutânea/efeitos dos fármacos , Solventes/farmacologia , Acetona/farmacologia , Animais , Água Corporal , Clorofórmio/farmacologia , Cristalização , Epiderme/fisiologia , Epiderme/ultraestrutura , Substituição ao Congelamento , Lipídeos/isolamento & purificação , Metanol/farmacologia , Microscopia Eletrônica/métodos , Permeabilidade , Sus scrofa , Suínos , Temperatura , VolatilizaçãoRESUMO
PURPOSE: In order to obtain dermal vehicles of ketorolac tromethamine (KT) for the local treatment of inflammation and restrict undesirable side effects of systemic levels hydrogels (HGs) of poloxamer and carbomer were developed. METHODS: KT poloxamer based HG (KT-P407-HG) and KT carbomer based HG (KT-C940-HG) were elaborated and characterized in terms of swelling, degradation, porosity, rheology, stability, in vitro release, ex vivo permeation and distribution skin layers. Finally, in vivo anti-inflammatory efficacy and skin tolerance were also assessed. RESULTS: HGs were transparent and kept stable after 3 months exhibiting biocompatible near neutral pH values. Rheological patterns fitted to Herschel-Bulkley for KT-C940-HG and Newton for KT-P407-HG due to its low viscosity at 25°C. Rapid release profiles were observed through first order kinetics. Following the surface the highest concentration of KT from C940-HG was found in the epidermis and the stratum corneum for P407-HG. Relevant anti-inflammatory efficacy of KT-P407-HG revealed enough ability to provide sufficient bioavailability KT to reach easily the site of action. The application of developed formulations in volunteers did not induce any visual skin irritation. CONCLUSIONS: KT-P407-HG was proposed as suitable formulation for anti-inflammatory local treatment without theoretical systemic side effect.
Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Cetorolaco de Trometamina/farmacologia , Poloxâmero/química , Administração Cutânea , Adulto , Animais , Anti-Inflamatórios não Esteroides/química , Disponibilidade Biológica , Excipientes , Feminino , Humanos , Hidrogéis , Concentração de Íons de Hidrogênio , Cetorolaco de Trometamina/química , Camundongos , Pessoa de Meia-Idade , Modelos Biológicos , Permeabilidade , Porosidade , Absorção Cutânea , Distribuição Tecidual , Viscosidade , Adulto JovemRESUMO
OBJECTIVE: The majority of age-dependent skin changes happen in the dermis layer inducing changes in skin collagen and in the proteoglycans. The main aim of this work is to study the efficacy of a Proteum serum, containing soybean-fragmented proteoglycans, against skin aging. MATERIALS AND METHODS: In vitro tests were performed to evaluate the Proteum serum ability on activating the production of collagen and proteoglycans. An in vivo long-term study was performed to determine the efficacy of the Proteum serum when applied on skin. Protection of healthy skin against detergent-induced dermatitis and the antioxidant properties of the applied Proteum serum were also studied. RESULTS AND DISCUSSION: The in vitro tests demonstrated that the Proteum serum was able to elevate the production of molecules which are essential for supporting the dermal extracellular matrix organization. These results were correlated by the in vivo measurements where a clear trend on improving the measured skin parameters due to the Proteum serum application was found. CONCLUSIONS: A beneficial effect of the Proteum serum was demonstrated with an improvement in the skin roughness and a reinforcement of the skin barrier function. Moreover, a significant protector effect on human stratum corneum against lipids peroxides (LPO) was demonstrated.
Assuntos
Colágeno/metabolismo , Epiderme/efeitos dos fármacos , Proteoglicanas/administração & dosagem , Envelhecimento da Pele/efeitos dos fármacos , Administração Cutânea , Humanos , Proteoglicanas/metabolismo , Pele/metabolismo , Absorção Cutânea/efeitos dos fármacosRESUMO
Abstract The aim of this study was to demonstrate the skin penetration of an antioxidant, gallic acid (GA), encapsulated in poly-ε-caprolactone (PCL) microspheres and applied onto textile fabrics, by a specific in vitro percutaneous absorption methodology. Two techniques (particle size distribution and FTIR) were used to characterise the microspheres obtained. The amount of GA-loaded microspheres present in the biofunctional textiles was established before their use as a textile drug delivery system. More absorption and desorption of microspheres with GA for the polyamide fabric were found in comparison with cotton fabric. The percutaneous absorption results indicated that the skin penetration of GA released from PCL-microspheres that were applied directly to the skin was higher than when GA was embedded within biofunctional textiles, in conclusion, an interesting reservoir effect may be promoted when biofunctional textiles were used.
Assuntos
Ácido Gálico , Microesferas , Nylons , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Ácido Gálico/química , Ácido Gálico/farmacocinética , Ácido Gálico/farmacologia , Poliésteres/química , Absorção Cutânea , SuínosRESUMO
The acylation of flavonoids serves as a means to alter their physicochemical properties, enhance their stability, and improve their bioactivity. Compared with natural flavonoid glycosides, the acylation of nonglycosylated flavonoids presents greater challenges since they contain fewer reactive sites. In this work, we propose an efficient strategy to solve this problem based on a first α-glucosylation step catalyzed by a sucrose phosphorylase, followed by acylation using a lipase. The method was applied to phloretin, a bioactive dihydrochalcone mainly present in apples. Phloretin underwent initial glucosylation at the 4'-OH position, followed by subsequent (and quantitative) acylation with C8, C12, and C16 acyl chains employing an immobilized lipase from Thermomyces lanuginosus. Electrospray ionization-mass spectrometry (ESI-MS) and two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) confirmed that the acylation took place at 6-OH of glucose. The water solubility of C8 acyl glucoside closely resembled that of aglycone, but for C12 and C16 derivatives, it was approximately 3 times lower. Compared with phloretin, the radical scavenging capacity of the new derivatives slightly decreased with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and was similar to 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTSâ¢+). Interestingly, C12 acyl-α-glucoside displayed an enhanced (3-fold) transdermal absorption (using pig skin biopsies) compared to phloretin and its α-glucoside.
Assuntos
Flavonoides , Malus , Animais , Suínos , Flavonoides/química , Floretina , Malus/química , Glucosídeos , Acilação , Lipase/química , AntioxidantesRESUMO
The main objective of this study is the evaluation of the use of a synthetic membrane, Nuclepore, as a model for permeation studies through sublingual mucosa. The permeability of two types of membranes, porcine sublingual oral mucosa and a synthetic Nuclepore membrane, to water was compared. Moreover, the water permeability of membranes modified with waterproofing formulations was measured to study their ability to protect against the penetration of viruses, toxins, etc. A relatively high correlation (R2 0.88) was obtained between the transmucosal water loss (TMWL) values of the artificial membrane and the mucosa. These results support the possible use of this synthetic membrane in the screening of the water permeability of formulations. In addition, studies of the permeation of different actives, drugs, and biocides through the two membranes were carried out, and these results were compared with their skin permeation data. The synthetic membrane does not seem to discern between compounds in terms of permeability. However, the permeation of caffeine through intact or modified membranes incorporating waterproofing formulations presents similar permeation profiles through the synthetic membrane and mucosa. The results from these assays should lend support to the use of this synthetic membrane when screening formulations to be applied in oral penetration studies.
RESUMO
The permeability of the oral or nasal mucosa is higher than that of the skin. Mucosa permeability depends mainly on the thickness and keratinization degree of the tissues. Their permeability barrier is conditioned by the presence of certain lipids. This work has the main aim of reinforcing the barrier effect of oral mucosa with a series of formulations to reduce permeation. Transmembrane water loss of different formulations was evaluated, and three of them were selected to be tested on the sublingual mucosa permeation of drugs. Caffeine, ibuprofen, dexamethasone, and ivermectin were applied on porcine skin, mucosa, and modified mucosa in order to compare the effectiveness of the formulations. A similar permeation profile was obtained in the different membranes: caffeine > ibuprofen~dexamethasone > ivermectin. The most efficient formulation was a liposomal formulation composed of lipids that are present in the skin stratum corneum. Impermeability provided by this formulation was notable mainly for the low-molecular-weight compounds, decreasing their permeability coefficient by between 40 and 80%. The reinforcement of the barrier function of mucosa provides a reduction or prevention of the permeation of different actives, which could be extrapolated to toxic compounds such as viruses, contaminants, toxins, etc.
RESUMO
Surface treatments for textile substrates have received significant attention from researchers around the world. Ozone and plasma treatments trigger a series of surface alterations in textile substrates that can improve the anchoring of other molecules or particles on these substrates. This work aims to evaluate the effect of ozone and plasma treatments on the impregnation of polymeric microcapsules containing lavender oil in polyester fabrics (PES). Microcapsules with walls of chitosan and gum arabic were prepared by complex coacervation and impregnated in PES, plasma-treated PES, and ozone-treated PES by padding. The microcapsules were characterized for their size and morphology and the surface-treated PES was evaluated by FTIR, TGA, SEM, and lavender release. The microcapsules were spherical in shape, with smooth surfaces. The FTIR analyses of the textile substrates with microcapsules showed bands referring to the polymers of the microcapsules, but not to the lavender; this was most likely because the smooth surface of the outer wall did not retain the lavender. The mass loss and the degradation temperatures measured by TGA were similar for all the ozone-treated and plasma-treated polyester samples. In the SEM images, spherical microcapsules and the impregnation of the microcapsules of larger sizes were perceived. Through the lavender release, it was observed that the plasma and ozone treatments interfered both with the amount of lavender delivered and with the control of the delivery.
RESUMO
Oregano essential oil was encapsulated in poly-ϵ-caprolactone nanoparticles by a nanoprecipitation method using glycerin as a moisturizer. Nanocapsule characterization was performed by measuring the particle size, colloidal stability and encapsulation efficiency using dynamic light scattering, UV-Vis spectrophotometry and scanning electron microscopy (SEM). The nanoparticles had a mean particle size of 235 nm with a monomodal distribution. In addition, a low polydispersity index was obtained, as well as a negative zeta potential of -36.3 mV and an encapsulation efficiency of 75.54%. Nanocapsules were applied to polyester textiles through bath exhaustion and foulard processing. Citric acid and a resin were applied as crosslinking agents to improve the nanocapsules' adhesion to the fabric. The adsorption, desorption, moisture content and essential oil extraction were evaluated to determine the affinity between the nanocapsules and the polyester. The adsorption was higher when the citric acid and the resin were applied. When standard oregano nanocapsules were used, almost all of the impregnated nanoparticles were removed when washed with water. The moisture content was evaluated for treated and non-treated textiles. There was a significant increase in the moisture content of the treated polyester compared to the non-treated polyester, which indicates that the polyester hydrophilicity increased with an important absorption of the essential oil nanocapsules; this can improve fabric comfort and probably promote antibacterial properties.
RESUMO
A sun filter, ethyl hexyl methoxycinnamate (EHMC) used as a tracer, was vehiculized by liposomes made up of internal wool lipids (IWL) or phosphatidylcholine (PC) and applied onto cotton and polyamide fabrics by exhaustion treatments. After topical applications of textiles on human volunteers, skin properties were evaluated by non-invasive biophysical techniques. Two methodologies based on percutaneous absorption were used to determine the content of the active principle penetration into the skin. PC liposomes showed more affinity for the fabric than IWL liposomes. Moreover, polyamide fabrics absorbed a slightly higher percentage of liposomes than cotton fabrics. A significantly higher amount of EHMC skin penetration was found when the biofunctional textiles were topically applied than when formulations were applied onto the skin. Moreover, the polyamide was the fibre with the highest released properties in all cases.
Assuntos
Cinamatos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/química , Pele/metabolismo , Protetores Solares/administração & dosagem , Têxteis/análise , Administração Tópica , Animais , Fibra de Algodão , Humanos , Lipídeos/química , Absorção Cutânea , Suínos , Lã/químicaRESUMO
Lipids from human hair consist mainly of cholesterol esters, free fatty acids, cholesterol, ceramides, and cholesterol sulfate. They are structured as lipid bilayers in the cell membrane complex (CMC) and make a large contribution to diffusion, cell cohesion, and mechanical strength. The loss of these lipids could impair the integrity of the hair, leading to deterioration in its tensile properties. Internal wool lipids (IWL) resemble those of the membranes of other keratinic tissues such as human hair or stratum corneum. The application of IWL structured as liposomes on pretreated hair samples has been demonstrated to restore the natural properties of the fibers. This study seeks to apply IWL liposomes to untreated hair fibers and to hair fibers subjected to chemical treatment. Differences in the lipidic composition of all chemically treated hairs were found with respect to the untreated ones. Lipid recovery of damaged hair due to the application of IWL liposomes was corroborated by lipid analysis of the hair. A high resistance to break of hair samples post-treated with IWL liposomes was observed. An increase in hydrogen bonds and electrostatic forces and an improvement in the cohesion between matrix and filaments were detected, probably because of some lipid recovery.
Assuntos
Ceramidas/química , Preparações para Cabelo/química , Cabelo/efeitos dos fármacos , Lipossomos/química , Animais , Humanos , Ovinos , Água , Lã/químicaRESUMO
Due to the high similarity in composition and structure between lanolin and human SC lipids, we will work with two models from wool wax. Two types of lanolin were evaluated: one extracted with water and surfactants (WEL) and the other extracted with organic solvents (SEL). Skin permeation and skin penetration studies were performed with two active compounds to study the feasibility of the use of lanolin-based synthetic membranes as models of mammalian skin. Diclofenac sodium and lidocaine were selected as the active compounds considering that they have different chemical natures and different lipophilicities. In the permeation assay with SEL, a better correlation was obtained with the less permeable compound diclofenac sodium. This assay suggests the feasibility of using artificial membranes with SEL as a model for percutaneous absorption studies, even though the lipophilic barrier should be improved. Penetration profiles of the APIs through the SEL and WEL membranes indicated that the two membranes diminish penetration and can be considered good membrane surrogates for skin permeability studies. However, the WEL membranes, with a pH value similar to that of the skin surface, promoted a higher degree of diminution of the permeability of the two drugs, similar to those found for the skin.
RESUMO
Penetration, usually with finite dosing, provides data about the total active amount in the skin and permeation, being the most used methodology, usually with infinite dosing, leads to data about pharmacokinetic parameters. The main objective of this work is to assess if results from permeation, most of them at finite dose, may be equivalent to those from penetration usually at infinite dose. The transdermal behavior of four drugs with different physicochemical properties (diclofenac sodium, ibuprofen, lidocaine, and caffeine) was studied using penetration/finite and kinetic permeation/infinite dose systems using vertical Franz diffusion cells to determine the relationships between permeation and penetration profiles. Good correlation of these two in vitro assays is difficult to find; the influence of their dosage and the proportion of different ionized/unionized compounds due to the pH of the skin layers was demonstrated. Finite and infinite dose regimens have different applications in transdermal delivery. Each approach presents its own advantages and challenges. Pharmaceutical industries are not always clear about the method and the dose to use to determine transdermal drug delivery. Being aware that this study presents results for four actives with different physicochemical properties, it can be concluded that the permeation/infinite results could not be always extrapolated to those of penetration/finite. Differences in hydrophilicity and ionization of drugs can significantly influence the lack of equivalence between the two methodologies. Further investigations in this field are still needed to study the correlation of the two methodologies and the main properties of the drugs that should be taken into account.
RESUMO
The hydrophilicity of fibers is directly related to the comfort of a fabric and represents one of the most important aspects of a textile. Therefore, polyester (PES) modification has focused on an increase in moisture content and a subsequent improvement of the user's experience. Based on the glycerol hygroscopic properties, the main objective has been the enhancement of the hydrophilicity of polyester by glycerol treatments. Furthermore, microwave irradiation and alkaline treatment have been applied, in order to increase glycerol adhesion. Treated PES samples were characterized by performing moisture content, negative ion, water diffusion and water vapor resistance analyses. The effect of different treatment conditions such as bath ratio (1/10 or 1/15), temperature (40, 60 or 100 °C), time (2 or 5 min) and microwave radiation intensity (300 or 500 W) was evaluated. The moisture content of treated PES results indicated that by decreasing the bath ratio and increasing the time and temperature the moisture gain can reach almost 14%, which can be easily related to increases in the weight of the fiber. The treatment with alkali was done and led to the highest moisture increase. Treatment with 500 W microwave irradiation led to higher glycerol retention after rinsing. Different experimental conditions were applied to the glycerol-treated PES fabrics, and a clear improvement in moisture content was obtained increasing the comfort. The results were compared with the ones obtained for cotton and wool, where the moisture is higher than non treated PES.
RESUMO
Propylene glycol (PG) has been used in formulations as a co-solvent and/or to enhance drug permeation through the skin from topical preparations. Two skin in vitro permeation approaches are used to determine the effect of PG on drug penetration. The in vitro Skin-PAMPA was performed using 24 actives applied in aqueous buffer or PG. PG modulates permeability by increasing or diminishing it in the compounds with poor or high permeability, respectively. Percutaneous absorption using pigskin on Franz diffusion cells was performed on seven actives and their commercial formulations. The commercial formulations evaluated tend to have a lower permeability than their corresponding PG solutions but maintain the compound distribution in the different strata: stratum corneum, epidermis and dermis. The results indicate the enhancer properties of PG for all compounds, especially for the hydrophilic ones. Additionally, the Synchrotron-Based Fourier Transform Infrared microspectroscopy technique is applied to study the penetration of PG and the molecular changes that the vehicle may promote in the different skin layers. Results showed an increase of the areas under the curve indicating the higher amount of lipids in the deeper layers and altering the lipidic order of the bilayer structure to a more disordered lipid structure.
Assuntos
Propilenoglicol/farmacologia , Absorção Cutânea/fisiologia , Pele/metabolismo , Adjuvantes Farmacêuticos , Administração Cutânea , Animais , Células Cultivadas , Cultura em Câmaras de Difusão , Humanos , Permeabilidade , Pele/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , SuínosRESUMO
BACKGROUND: Daily skin washing routines can promote undesirable effects on skin barrier function. The stratum corneum (SC) lipid matrix is crucial for skin barrier function. Skin cleansing products are mostly composed of surfactants: surface-active molecules that interact with skin lipids in several ways. The main aim of this work was to investigate the effect produced by surfactants on skin barrier permeability. Porcine skin is a well-accepted and readily available model of the human skin barrier. The effect of two cleansing formulations (based on different surfactant mixtures) on the barrier properties of mammalian skin were evaluated. METHODS: Water sorption/desorption (DVS) experiments were used to measure skin permeability. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and confocal Raman were useful to study SC lipid organization. RESULTS: The results showed that while anionic surfactants (SLS) had a negative impact on the skin barrier, with a clear increase of alkyl chain disorder; cosurfactants present in the shampoo formulation diminished the detrimental effect of their primary ionic surfactant, inducing less modification on lipid intramolecular chain disorder. CONCLUSIONS: The obtained results confirmed that the mild cleansing formulations studied had gentle interaction with skin. The capacity to discriminate between detergent systems was clearly established with both DVS and spectroscopy techniques.