Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(41): e2307149120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37748080

RESUMO

The search for definitive biosignatures-unambiguous markers of past or present life-is a central goal of paleobiology and astrobiology. We used pyrolysis-gas chromatography coupled to mass spectrometry to analyze chemically disparate samples, including living cells, geologically processed fossil organic material, carbon-rich meteorites, and laboratory-synthesized organic compounds and mixtures. Data from each sample were employed as training and test subsets for machine-learning methods, which resulted in a model that can identify the biogenicity of both contemporary and ancient geologically processed samples with ~90% accuracy. These machine-learning methods do not rely on precise compound identification: Rather, the relational aspects of chromatographic and mass peaks provide the needed information, which underscores this method's utility for detecting alien biology.


Assuntos
Carbono , Emigrantes e Imigrantes , Humanos , Exobiologia , Fósseis , Aprendizado de Máquina
2.
Angew Chem Int Ed Engl ; 62(14): e202217023, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36757113

RESUMO

Compared with conventional, solution-phase approaches, solid-state reaction methods can provide unique access to novel synthetic targets. Nanothreads-one-dimensional diamondoid polymers formed through the compression of small molecules-represent a new class of materials produced via solid-state reactions, however, the formation of chemically homogeneous products with targeted functionalization represents a persistent challenge. Through careful consideration of molecular precursor stacking geometry and functionalization, we report here the scalable synthesis of chemically homogeneous, functionalized nanothreads through the solid-state polymerization of 2,5-furandicarboxylic acid. The resulting product possesses high-density, pendant carboxyl functionalization along both sides of the backbone, enabling new opportunities for the post-synthetic processing and chemical modification of nanothread materials applicable to a broad range of potential applications.

3.
J Phys Chem A ; 125(1): 376-386, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356271

RESUMO

Hydrogenated carbon nitride is synthesized by polymerization of 1,5-naphthyridine, a nitrogen-containing heteroaromatic compound, under high-pressure and high-temperature conditions. The polymerization progressed significantly at temperatures above 573 K at 0.5 GPa and above 623 K at 1.5 GPa. The reaction temperature was relatively lower than that observed for pure naphthalene, suggesting that the reaction temperature is considerably lowered when nitrogen atoms exist in the aromatic ring structure. The polymerization reaction largely progresses without significant change in the N/C ratio. Three types of dimerization are identified; naphthylation, exact dimerization, and dimerization with hydrogenation as determined from the gas chromatograph-mass spectrometry analysis of soluble products. Infrared spectra suggest that hydrogenation products were likely to be formed with sp3 carbon and NH bonding. Solid-state 13C nuclear magnetic resonance reveals that the sp3/sp2 ratio is 0.14 in both the insoluble solids synthesized at 0.5 and 1.5 GPa. Not only the dimers but also soluble heavier oligomers and insoluble polymers formed through more extensive polymerization. The major reaction mechanism of 1,5-Nap was common to both the 0.5 and 1.5 GPa experiments, although the required reaction temperature increased with increasing pressure and aromatic rings preferentially remained at the higher pressure.

4.
J Am Chem Soc ; 142(42): 17944-17955, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31961671

RESUMO

Relative to the rich library of small-molecule organics, few examples of ordered extended (i.e., nonmolecular) hydrocarbon networks are known. In particular, sp3 bonded, diamond-like materials represent appealing targets because of their desirable mechanical, thermal, and optical properties. While many covalent organic frameworks (COFs)-extended, covalently bonded, and porous structures-have been realized through molecular architecture with exceptional control, the design and synthesis of dense, covalent extended solids has been a longstanding challenge. Here we report the preparation of a sp3-bonded, low-dimensional hydrocarbon synthesized via high-pressure, solid-state diradical polymerization of cubane (C8H8), which is a saturated, but immensely strained, cage-like molecule. Experimental measurements show that the obtained product is crystalline with three-dimensional order that appears to largely preserve the basic structural topology of the cubane molecular precursor and exhibits high hardness (comparable to fused quartz) and thermal stability up to 300 °C. Among the plausible theoretical candidate structures, one-dimensional carbon scaffolds comprising six- and four-membered rings that pack within a pseudosquare lattice provide the best agreement with experimental data. These diamond-like molecular rods with extraordinarily small thickness are among the smallest members in the carbon nanothread family, and calculations indicate one of the stiffest one-dimensional systems known. These results present opportunities for the synthesis of purely sp3-bonded extended solids formed through the strain release of saturated molecules, as opposed to only unsaturated precursors.

5.
Angew Chem Int Ed Engl ; 58(5): 1468-1473, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30488662

RESUMO

Pressure-induced polymerization (PIP) of aromatics is a novel method for constructing sp3 -carbon frameworks, and nanothreads with diamond-like structures were synthesized by compressing benzene and its derivatives. Here by compressing a benzene-hexafluorobenzene cocrystal (CHCF), H-F-substituted graphane with a layered structure in the PIP product was identified. Based on the crystal structure determined from the in situ neutron diffraction and the intermediate products identified by gas chromatography-mass spectrum, we found that at 20 GPa CHCF forms tilted columns with benzene and hexafluorobenzene stacked alternatively, and leads to a [4+2] polymer, which then transforms to short-range ordered H-F-substituted graphane. The reaction process involves [4+2] Diels-Alder, retro-Diels-Alder, and 1-1' coupling reactions, and the former is the key reaction in the PIP. These studies confirm the elemental reactions of PIP of CHCF for the first time, and provide insight into the PIP of aromatics.

6.
J Phys Chem A ; 122(11): 2858-2863, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29432685

RESUMO

Tetracyanomethane, C(CN)4, is a tetrahedral molecule containing a central sp3 carbon that is coordinated by reactive nitrile groups that could potentially transform to an extended CN network with a significant fraction of sp3 carbon. High-purity C(CN)4 was synthesized, and its physiochemical behavior was studied using in situ synchrotron angle-dispersive powder X-ray diffraction (PXRD) and Raman and infrared (IR) spectroscopies in a diamond anvil cell (DAC) up to 21 GPa. The pressure dependence of the fundamental vibrational modes associated with the molecular solid was determined, and some low-frequency Raman modes are reported for the first time. Crystalline molecular C(CN)4 starts to polymerize above ∼7 GPa and transforms into an interconnected disordered network, which is recoverable to ambient conditions. The results demonstrate feasibility for the pressure-induced polymerization of molecules with premeditated functionality.

7.
Philos Trans A Math Phys Eng Sci ; 375(2109)2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133454

RESUMO

Enzymes are biopolymeric complexes that catalyse biochemical reactions and shape metabolic pathways. Enzymes usually work with small molecule cofactors that actively participate in reaction mechanisms and complex, usually globular, polymeric structures capable of specific substrate binding, encapsulation and orientation. Moreover, the globular structures of enzymes possess cavities with modulated microenvironments, facilitating the progression of reaction(s). The globular structure is ensured by long folded protein or RNA strands. Synthesis of such elaborate complexes has proven difficult under prebiotically plausible conditions. We explore here that catalysis may have been performed by alternative polymeric structures, namely hyperbranched polymers. Hyperbranched polymers are relatively complex structures that can be synthesized under prebiotically plausible conditions; their globular structure is ensured by virtue of their architecture rather than folding. In this study, we probe the ability of tertiary amine-bearing hyperbranched polyesters to form hydrophobic pockets as a reaction-promoting medium for the Kemp elimination reaction. Our results show that polyesters formed upon reaction between glycerol, triethanolamine and organic acid containing hydrophobic groups, i.e. adipic and methylsuccinic acid, are capable of increasing the rate of Kemp elimination by a factor of up to 3 over monomeric triethanolamine.This article is part of the themed issue 'Reconceptualizing the origins of life'.


Assuntos
Materiais Biomiméticos/química , Enzimas/metabolismo , Poliésteres/química , Catálise , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular
8.
Angew Chem Int Ed Engl ; 56(23): 6553-6557, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28464355

RESUMO

Geometric isomerism in polyacetylene is a basic concept in chemistry textbooks. Polymerization to cis-isomer is kinetically preferred at low temperature, not only in the classic catalytic reaction in solution but also, unexpectedly, in the crystalline phase when it is driven by external pressure without a catalyst. Until now, no perfect reaction route has been proposed for this pressure-induced polymerization. Using in situ neutron diffraction and meta-dynamic simulation, we discovered that under high pressure, acetylene molecules react along a specific crystallographic direction that is perpendicular to those previously proposed. Following this route produces a pure cis-isomer and more surprisingly, predicts that graphane is the final product. Experimentally, polycyclic polymers with a layered structure were identified in the recovered product by solid-state nuclear magnetic resonance and neutron pair distribution functions, which indicates the possibility of synthesizing graphane under high pressure.

9.
Nat Mater ; 14(1): 43-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25242532

RESUMO

Low-dimensional carbon nanomaterials such as fullerenes, nanotubes, graphene and diamondoids have extraordinary physical and chemical properties. Compression-induced polymerization of aromatic molecules could provide a viable synthetic route to ordered carbon nanomaterials, but despite almost a century of study this approach has produced only amorphous products. Here we report recovery to ambient pressure of macroscopic quantities of a crystalline one- dimensional sp(3) carbon nanomaterial formed by high-pressure solid-state reaction of benzene. X-ray and neutron diffraction, Raman spectroscopy, solid-state NMR, transmission electron microscopy and first-principles calculations reveal close- packed bundles of subnanometre-diameter sp(3)-bonded carbon threads capped with hydrogen, crystalline in two dimensions and short-range ordered in the third. These nanothreads promise extraordinary properties such as strength and stiffness higher than that of sp(2) carbon nanotubes or conventional high-strength polymers. They may be the first member of a new class of ordered sp(3) nanomaterials synthesized by kinetic control of high-pressure solid-state reactions.

10.
Angew Chem Int Ed Engl ; 55(39): 12040-4, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27561179

RESUMO

Acetonitrile (CH3 CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. It is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH⋅⋅⋅N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp(2) and sp(3) bonded carbon. Finally, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst.

11.
Orig Life Evol Biosph ; 45(1-2): 123-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25990933

RESUMO

Proteins are responsible multiple biological functions, such as ligand binding, catalysis, and ion channeling. This functionality is enabled by proteins' three-dimensional structures that require long polypeptides. Since plausibly prebiotic synthesis of functional polypeptides has proven challenging in the laboratory, we propose that these functions may have been initially performed by alternative macromolecular constructs, namely hyperbranched polymers (HBPs), during early stages of chemical evolution. HBPs can be straightforwardly synthesized in one-pot processes, possess globular structures determined by their architecture as opposed to folding in proteins, and have documented ligand binding and catalytic properties. Our initial study focuses on glycerol-citric acid HBPs synthesized via moderate heating in the dry state. The polymerization products consisted of a mixture of isomeric structures of varying molar mass as evidenced by NMR, mass spectrometry and size-exclusion chromatography. Addition of divalent cations during polymerization resulted in increased incorporation of citric acid into the HBPs and the possible formation of cation-oligomer complexes. The chelating properties of citric acid govern the makeup of the resulting polymer, turning the polymerization system into a rudimentary smart material.


Assuntos
Ácido Cítrico/química , Evolução Química , Glicerol/química , Poliésteres/química , Cátions Bivalentes/química , Estrutura Molecular , Origem da Vida , Polimerização , Temperatura
12.
Inorg Chem ; 53(13): 7020-7, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24926938

RESUMO

A new monoclinic variation of Mg2C3 was synthesized from the elements under high-pressure (HP), high-temperature (HT) conditions. Formation of the new compound, which can be recovered to ambient conditions, was observed in situ using X-ray diffraction with synchrotron radiation. The structural solution was achieved by utilizing accurate theoretical results obtained from ab initio evolutionary structure prediction algorithm USPEX. Like the previously known orthorhombic Pnnm structure (α-Mg2C3), the new monoclinic C2/m structure (ß-Mg2C3) contains linear C3(4-) chains that are isoelectronic with CO2. Unlike α-Mg2C3, which contains alternating layers of C3(4-) chains oriented in opposite directions, all C3(4-) chains within ß-Mg2C3 are nearly aligned along the crystallographic c-axis. Hydrolysis of ß-Mg2C3 yields C3H4, as detected by mass spectrometry, while Raman and NMR measurements show clear C═C stretching near 1200 cm(-1) and (13)C resonances confirming the presence of the rare allylenide anion.

13.
Proc Natl Acad Sci U S A ; 108(43): 17635-8, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21997216

RESUMO

Thermochemical sulfate reduction experiments with simple amino acid and dilute concentrations of sulfate reveal significant degrees of mass-independent sulfur isotope fractionation. Enrichments of up to 13‰ for (33)S are attributed to a magnetic isotope effect (MIE) associated with the formation of thiol-disulfide, ion-radical pairs. Observed (36)S depletions in products are explained here by classical (mass-dependent) isotope effects and mixing processes. The experimental data contrasts strongly with multiple sulfur isotope trends in Archean samples, which exhibit significant (36)S anomalies. These results support an origin other than thermochemical sulfate reduction for the mass-independent signals observed for early Earth samples.


Assuntos
Temperatura Alta , Magnetismo , Modelos Químicos , Sulfatos/química , Isótopos de Enxofre/química , Aminoácidos/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução
14.
Proc Natl Acad Sci U S A ; 108(48): 19171-6, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-21464292

RESUMO

Multidimensional solid-state NMR spectroscopy is used to refine the identification and abundance determination of functional groups in insoluble organic matter (IOM) isolated from a carbonaceous chondrite (Murchison, CM2). It is shown that IOM is composed primarily of highly substituted single ring aromatics, substituted furan/pyran moieties, highly branched oxygenated aliphatics, and carbonyl groups. A pathway for producing an IOM-like molecular structure through formaldehyde polymerization is proposed and tested experimentally. Solid-state (13)C NMR analysis of aqueously altered formaldehyde polymer reveals considerable similarity with chondritic IOM. Carbon X-ray absorption near edge structure spectroscopy of formaldehyde polymer reveals the presence of similar functional groups across certain Comet 81P/Wild 2 organic solids, interplanetary dust particles, and primitive IOM. Variation in functional group concentration amongst these extraterrestrial materials is understood to be a result of various degrees of processing in the parent bodies, in space, during atmospheric entry, etc. These results support the hypothesis that chondritic IOM and cometary refractory organic solids are related chemically and likely were derived from formaldehyde polymer. The fine-scale morphology of formaldehyde polymer produced in the experiment reveals abundant nanospherules that are similar in size and shape to organic nanoglobules that are ubiquitous in primitive chondrites.


Assuntos
Meio Ambiente Extraterreno/química , Formaldeído/química , Espectroscopia de Ressonância Magnética/métodos , Meteoroides , Nanoestruturas/química , Compostos Orgânicos/análise , Microscopia Eletrônica de Varredura , Modelos Químicos , Estrutura Molecular , Polimerização
15.
J Phys Chem Lett ; 15(9): 2344-2351, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38387075

RESUMO

Compression of small molecules can induce solid-state reactions that are difficult or impossible under conventional, solution-phase conditions. Of particular interest is the topochemical-like reaction of arenes to produce polymeric nanomaterials. However, high reaction onset pressures and poor selectivity remain significant challenges. Herein, the incorporation of electron-withdrawing and -donating groups into π-stacked arenes is proposed as a strategy to reduce reaction barriers to cycloaddition and onset pressures. Nevertheless, competing side-chain reactions between functional groups represent alternative viable pathways. For the case of a diaminobenzene:tetracyanobenzene cocrystal, amidine formation between amine and cyano groups occurs prior to cycloaddition with an onset pressure near 9 GPa, as determined using vibrational spectroscopy, X-ray diffraction, and first-principles calculations. This work demonstrates that reduced-barrier cycloaddition reactions are theoretically possible via strategic functionalization; however, the incorporation of pendant groups may enable alternative reaction pathways. Controlled reactions between pendant groups represent an additional strategy for producing unique polymeric nanomaterials.

16.
Science ; 379(6634): eabn9057, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821663

RESUMO

Samples of the carbonaceous asteroid (162173) Ryugu were collected and brought to Earth by the Hayabusa2 spacecraft. We investigated the macromolecular organic matter in Ryugu samples and found that it contains aromatic and aliphatic carbon, ketone, and carboxyl functional groups. The spectroscopic features of the organic matter are consistent with those in chemically primitive carbonaceous chondrite meteorites that experienced parent-body aqueous alteration (reactions with liquid water). The morphology of the organic carbon includes nanoglobules and diffuse carbon associated with phyllosilicate and carbonate minerals. Deuterium and/or nitrogen-15 enrichments indicate that the organic matter formed in a cold molecular cloud or the presolar nebula. The diversity of the organic matter indicates variable levels of aqueous alteration on Ryugu's parent body.

17.
Langmuir ; 28(50): 17322-30, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23163294

RESUMO

The adsorption configuration of organic molecules on mineral surfaces is of great interest because it can provide fundamental information for both engineered and natural systems. Here we have conducted surface-enhanced Raman spectroscopy (SERS) measurements to probe the attachment configurations of DOPA on nanorutile particles under different pH and surface coverage conditions. The Raman signal enhancement arises when a charge transfer (CT) complex forms between the nanoparticles and adsorbed DOPA. This Raman signal is exclusively from the surface-bound complexes with great sensitivity to the binding and orientation of the DOPA attached to the TiO(2) surface. Our SERS spectra show peaks that progressively change with pH and surface coverage, indicating changing surface speciation. At low pH and surface coverage, DOPA adsorbs on the surface lying down, with probably three points of attachment, whereas at higher pH and surface coverage DOPA stands up on the surface as a species involving two attachment points via the two phenolic oxygens. Our results demonstrate experimentally the varying proportions of the two surface species as a function of environmental conditions consistent with published surface complexation modeling. This observation opens up the possibility to manipulate organic molecule attachment in engineered systems such as biodetection devices. Furthermore, it provides a perspective on the possible role of mineral surfaces in the chemical evolution of biomolecules on the early Earth. Adsorbed biomolecules on mineral surface in certain configurations may have had an advantage for subsequent condensation reactions, facilitating the formation of peptides.


Assuntos
Levodopa/química , Nanopartículas/química , Titânio/química , Concentração de Íons de Hidrogênio , Análise Espectral Raman , Propriedades de Superfície
18.
Appl Environ Microbiol ; 76(9): 2916-22, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20228116

RESUMO

We examined the chemical composition of extracellular polymeric substances (EPS) extracted from two natural microbial pellicle biofilms growing on acid mine drainage (AMD) solutions. The EPS obtained from a mid-developmental-stage biofilm (DS1) and a mature biofilm (DS2) were qualitatively and quantitatively compared. More than twice as much EPS was derived from DS2 as from DS1 (approximately 340 and 150 mg of EPS per g [dry weight] for DS2 and DS1, respectively). Composition analyses indicated the presence of carbohydrates, metals, proteins, and minor quantities of DNA and lipids, although the relative concentrations of these components were different for the two EPS samples. EPS from DS2 contained higher concentrations of metals and carbohydrates than EPS from DS1. Fe was the most abundant metal in both samples, accounting for about 73% of the total metal content, followed by Al, Mg, and Zn. The relative concentration profile for these metals resembled that for the AMD solution in which the biofilms grew, except for Si, Mn, and Co. Glycosyl composition analysis indicated that both EPS samples were composed primarily of galactose, glucose, heptose, rhamnose, and mannose, while the relative amounts of individual sugars were substantially different in DS1 and DS2. Additionally, carbohydrate linkage analysis revealed multiply linked heptose, galactose, glucose, mannose, and rhamnose, with some of the glucose in a 4-linked form. These results indicate that the biochemical composition of the EPS from these acidic biofilms is dependent on maturity and is controlled by the microbial communities, as well as the local geochemical environment.


Assuntos
Biofilmes , Polímeros/química , Carboidratos/análise , Metais/análise
19.
Prog Earth Planet Sci ; 7(1): 14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32626647

RESUMO

An understanding of the mechanisms of Ti is incorporation into silicate glasses and melts is critical for the field of petrology. Trace-element thermobarometry, high-field-strength element partitioning, and the physical properties of magmas are all be influenced by Ti incorporation into glasses and changes therein in response to changes in composition and temperature. In this study, we combine 29Si solid state NMR and Ti K-edge XAFS spectroscopy to investigate how Ti is incorporated into quenched Na-silicate glasses, and the influence of Ti on the structure of silicate species in these glasses. 29Si NMR shows that in both Ti-bearing Na2O•4SiO2 (NS4) and Na2O•8SiO2 (NS8) glasses, increasing the amount of Ti in the melt results in a shift of Si Q4 peak in the 29Si NMR spectra reflecting Ti nearest neighbors for Si in Q4 speciation. The Ti XAFS results from NS8 glass indicate that Ti is primarily incorporated in [5]-fold coordination. At higher Ti content, there is a shift of the XAFS pre-edge feature suggesting mixing of [4]-fold Ti into the spectra. Combined, the 29Si NMR and XAFS pre-edge data are consistent with Ti incorporation as isolated [5]Ti atoms and the formation of [5]Ti clusters at relatively low Ti concentrations, with no evidence for Ti-Na interactions as suggested by previous studies. As the Ti content increases, the Ti atoms begin to occupy 4-fold coordinated sites interacting primarily with Si in Q4 speciation (no significant Na-[4] Ti bonding). The internal consistency of these two techniques provides a uniquely complete snapshot of the complexity of Ti incorporation in silicate melts and underlies the importance of understanding Ti incorporation mechanisms in natural magmatic systems.

20.
Integr Med (Encinitas) ; 18(4): 12-15, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32549823

RESUMO

There may be no more exemplary story of the development of natural healing within chiropractornaturopaths than the story of Henry J. Schlichting, Jr. of Midland, Texas. Schlichting was trained as a chiropractor in Oklahoma, and moved to Texas in 1941, setting himself up as a naturopath. At the time, neither chiropractors nor naturopaths were licensed in Texas. Schlichting became a leader within natural healing professionals, first within Texas, and then nationally. He became a trusted ally of both Robert Carroll and of Dr. Budden at Western States College. He and his Texas naturopaths achieved licensed status in 1949. In the early 1950s all looked bright; and then it all turned dark. This is Part 2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA