Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nanotechnology ; 35(40)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38604153

RESUMO

Nanoscale variations of optical properties in transition metal dichalcogenide (TMD) monolayers can be explored with cathodoluminescence (CL) and electron energy loss spectroscopy (EELS) using electron microscopes. To increase the CL emission intensity from TMD monolayers, the MoSe2flakes are encapsulated in hexagonal boron nitride (hBN), creating van der Waals (VdW) heterostructures. Until now, the studies have been exclusively focused on scanning transmission electron microscopy (STEM-CL) or scanning electron microscopy (SEM-CL), separately. Here, we present results, using both techniques on the same sample, thereby exploring a large acceleration voltage range. We correlate the CL measurements with STEM-EELS measurements acquired with different energy dispersions, to access both the low-loss region at ultra-high spectral resolution, and the core-loss region. This provides information about the weight of the various absorption phenomena including the direct TMD absorption, the hBN interband transitions, the hBN bulk plasmon, and the core losses of the atoms present in the heterostructure. The S(T)EM-CL measurements from the TMD monolayer only show emission from the A exciton. Combining the STEM-EELS and S(T)EM-CL measurements, we can reconstruct different decay pathways leading to the A exciton CL emission. The comparison with SEM-CL shows that this is also a good technique for TMD heterostructure characterization, where the reduced demands on sample preparation are appealing. To demonstrate the capabilities of SEM-CL imaging, we also measured on a SiO2/Si substrate, quintessential in the sample preparation of two-dimensional materials, which is electron-opaque and can only be measured in SEM-CL. The CL-emitting defects of SiO2make this substrate challenging to use, but we demonstrate that this background can be suppressed by using lower electron energy.

2.
Small ; 19(33): e2207747, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37029699

RESUMO

The waveguide modes in chemically-grown silver nanowires on silicon nitride substrates are observed using spectrally- and spatially-resolved cathodoluminescence (CL) excited by high-energy electrons in a scanning electron microscope. The presence of a long-range, travelling surface plasmon mode modulates the coupling efficiency of the incident electron energy into the nanowires, which is observed as oscillations in the measured CL with the point of excitation by the focused electron beam. The experimental data are modeled using the theory of surface plasmon polariton modes in cylindrical metal waveguides, enabling the complex mode wavenumbers and excitation strength of the long-range surface plasmon mode to be extracted. The experiments yield insight into the energy transfer mechanisms between fast electrons and coherent oscillations in surface charge density in metal nanowires and the relative amplitudes of the radiative processes excited in the wire by the electron.

3.
Microsc Microanal ; 26(4): 808-813, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32366354

RESUMO

The excitability of local surface plasmon modes in radial trimers composed of gold nanorods was mapped using hyperspectral cathodoluminescence (CL) in the scanning electron microscope. In symmetric trimers, the local plasmon resonances could be excited most effectively at the ends of individual rods. Introducing asymmetry into the structure breaks the degeneracy of the dipole modes and changes the excitability of transverse dipole modes in different directions. CL in the scanning electron microscope has great potential to interrogate individual nanophotonic structures and is a complement to electron energy loss spectroscopy and optical microscopy.

4.
Nano Lett ; 18(4): 2288-2293, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29546762

RESUMO

Cathodoluminescence (CL) imaging spectroscopy provides two-dimensional optical excitation images of photonic nanostructures with a deep-subwavelength spatial resolution. So far, CL imaging was unable to provide a direct measurement of the excitation and emission probabilities of photonic nanostructures in a spatially resolved manner. Here, we demonstrate that by mapping the cathodoluminescence autocorrelation function g(2) together with the CL spectral distribution the excitation and emission rates can be disentangled at every excitation position. We use InGaN/GaN quantum wells in GaN nanowires with diameters in the range 200-500 nm as a model system to test our new g(2) mapping methodology and find characteristic differences in excitation and emission rates both between wires and within wires. Strong differences in the average CL intensity between the wires are the result of differences in the emission efficiencies. At the highest spatial resolution, intensity variations observed within wires are the result of excitation rates that vary with the nanoscale geometry of the structures. The fact that strong spatial variations observed in the CL intensity are not only uniquely linked to variations in emission efficiency but also linked to excitation efficiency has profound implications for the interpretation of the CL data for nanostructured geometries in general.

5.
Nano Lett ; 15(11): 7666-70, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26457569

RESUMO

We demonstrate coherent control over the optical response of a coupled plasmonic resonator by high-energy electron beam excitation. We spatially control the position of an electron beam on a gold dolmen and record the cathodoluminescence and electron energy loss spectra. By selective coherent excitation of the dolmen elements in the near field, we are able to manipulate modal amplitudes of bonding and antibonding eigenmodes. We employ a combination of CL and EELS to gain detailed insight in the power dissipation of these modes at the nanoscale as CL selectively probes the radiative response and EELS probes the combined effect of Ohmic dissipation and radiation.

6.
Nano Lett ; 13(1): 188-93, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23194111

RESUMO

One of the simplest and most common structures used for directing light in macroscale applications is the parabolic reflector. Parabolic reflectors are ubiquitous in many technologies, from satellite dishes to hand-held flashlights. Today, there is a growing interest in the use of ultracompact metallic structures for manipulating light on the wavelength scale. Significant progress has been made in scaling radiowave antennas to the nanoscale for operation in the visible range, but similar scaling of parabolic reflectors employing ray-optics concepts has not yet been accomplished because of the difficulty in fabricating nanoscale three-dimensional surfaces. Here, we demonstrate that plasmon physics can be employed to realize a resonant elliptical cavity functioning as an essentially planar nanometallic structure that serves as a broadband unidirectional parabolic antenna at optical frequencies.

7.
Phys Rev Lett ; 110(1): 013902, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23383791

RESUMO

We fabricate and characterize a metal-dielectric nanostructure with an effective refractive index n = 0 in the visible spectral range. Light is excited in the material at deep subwavelength resolution by a 30-keV electron beam. From the measured spatially and angle-resolved emission patterns, a vanishing phase advance, corresponding to an effective [Symbol: see text] = 0 and n = 0, is directly observed at the cutoff frequency. The wavelength at which this condition is observed can be tuned over the entire visible or near-infrared spectral range by varying the waveguide width. This n = 0 plasmonic nanostructure may serve as a new building block in nanoscale optical integrated circuits and to control spontaneous emission as experimentally demonstrated by the strongly enhanced radiative optical density of states over the entire n = 0 structure.

8.
Opt Express ; 20(17): 18679-91, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23038509

RESUMO

Determining the emission polarization properties of sub-wavelength structures like optical nanoantennas, nanocavities and photonic crystals is important to understand their physical properties and to optimize their use in applications. Recently we have shown that angle-resolved cathodoluminescence imaging spectroscopy (ARCIS), which uses a 30 keV electron beam as an excitation source, is a useful technique to study the far-field properties of such structures. Here we extend the technique with polarization-sensitive angular detection. As proof-of-principle, we experimentally probe the emission polarization properties of three orthogonal dipolar emitters of which the polarization is well-known and find excellent agreement between experiment and theory. We access these dipole orientations by exciting an unstructured gold surface and a ridge nanoantenna with an in-plane dipolar plasmon resonance. The light emission is collected with an aluminum half paraboloid mirror. We show how to take the effect of the paraboloid mirror on the emission polarization into account and how to predict the polarization-filtered pattern if the emission polarization is known. Furthermore, we calculate that by introducing a slit in the beam path the polarization contrast in cathodoluminescence spectroscopy can be strongly enhanced. Finally, we reconstruct the emission polarization from the experimental data and show that from these field patterns we can infer the orientation of the induced dipole moment. The ability to measure the emission polarization, in combination with the sensitivity to the local density of optical states, broad spectral range and high excitation resolution, can be employed to study photonic nanostructures in great detail.


Assuntos
Aumento da Imagem/instrumentação , Lentes , Medições Luminescentes/instrumentação , Microscopia de Polarização/instrumentação , Eletrodos , Desenho de Equipamento , Análise de Falha de Equipamento , Análise de Fourier
9.
Phys Rev Lett ; 108(7): 077404, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22401256

RESUMO

We present measurements on plasmonic metamolecules under local excitation using cathodoluminescence which show a spatial redistribution of the local density of optical states at the same frequency where a sharp spectral Fano feature in extinction has been observed. Our analytical model shows that both near- and far-field effects arise due to interference of the same two eigenmodes of the system. We present quantitative insights both in a bare state, and in a dressed state picture that describe Fano interference either as near-field amplitude transfer between coupled bare states, or as interference of uncoupled eigenmodes in the far field. We identify the same eigenmode causing a dip in extinction to strongly enhance the radiative local density of optical states, making it a promising candidate for spontaneous emission control.

10.
Nano Lett ; 11(9): 3779-84, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21780758

RESUMO

Optical nanoantennas mediate optical coupling between single emitters and the far field, making both light emission and reception more effective. Probing the response of a nanoantenna as a function of position requires accurate positioning of a subwavelength sized emitter with known orientation. Here we present a novel experimental technique that uses a high-energy electron beam as broad band point dipole source of visible radiation, to study the emission properties of a Yagi-Uda antenna composed of a linear array of Au nanoparticles. We show angle-resolved emission spectra for different wavelengths and find evidence for directional emission of light that depends strongly on where the antenna is excited. We demonstrate that the experimental results can be explained by a coupled point dipole model which includes the effect of the dielectric substrate. This work establishes angle-resolved cathodoluminescence spectroscopy as a powerful technique tool to characterize single optical nanoantennas.

11.
Nano Lett ; 11(10): 4265-9, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21879729

RESUMO

We perform spectrally resolved cathodoluminescence (CL) imaging nanoscopy using a 30 keV electron beam to identify the resonant modes of an ultrathin (20 nm), laterally tapered plasmonic Ag nanostrip antenna. We resolve with deep-subwavelength resolution four antenna resonances (resonance orders m = 2-5) that are ascribed to surface plasmon polariton standing waves that are confined on the strip. We map the local density of states on the strip surface and show that it has contributions from symmetric and antisymmetric surface plasmon polariton modes, each with a very different mode index. This work illustrates the power of CL experiments that can visualize hidden modes that for symmetry reasons have been elusive in optical light scattering experiments.

12.
ACS Photonics ; 8(3): 916-925, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33763505

RESUMO

Photon bunching in incoherent cathodoluminescence (CL) spectroscopy originates from the fact that a single high-energy electron can generate multiple photons when interacting with a material, thus, revealing key properties of electron-matter excitation. Contrary to previous works based on Monte Carlo modeling, here we present a fully analytical model describing the amplitude and shape of the second order autocorrelation function (g (2)(τ)) for continuous and pulsed electron beams. Moreover, we extend the analysis of photon bunching to ultrashort electron pulses, in which up to 500 electrons per pulse excite the sample within a few picoseconds. We obtain a simple equation relating the bunching strength (g (2)(0)) to the electron beam current, emitter decay lifetime, pulse duration, in the case of pulsed electron beams, and electron excitation efficiency (γ), defined as the probability that an electron creates at least one interaction with the emitter. The analytical model shows good agreement with the experimental data obtained on InGaN/GaN quantum wells using continuous, ns-pulsed (using beam blanker) and ultrashort ps-pulsed (using photoemission) electron beams. We extract excitation efficiencies of 0.13 and 0.05 for 10 and 8 keV electron beams, respectively, and we observe that nonlinear effects play no compelling role, even after excitation with ultrashort and dense electron cascades in the quantum wells.

13.
Nanoscale ; 12(29): 15588-15603, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32677648

RESUMO

The understanding of living systems and their building blocks relies heavily on the assessment of structure-function relationships at the nanoscale. Ever since the development of the first optical microscope, the reliance of scientists across disciplines on microscopy has increased. The development of the first electron microscope and with it the access to information at the nanoscale has prompted numerous disruptive discoveries. While fluorescence imaging allows identification of specific entities based on the labelling with fluorophores, the unlabelled constituents of the samples remain invisible. In electron microscopy on the other hand, structures can be comprehensively visualized based on their distinct electron density and geometry. Although electron microscopy is a powerful tool, it does not implicitly provide information on the location and activity of specific organic molecules. While correlative light and electron microscopy techniques have attempted to unify the two modalities, the resolution mismatch between the two data sets poses major challenges. Recent developments in optical super resolution microscopy enable high resolution correlative light and electron microscopy, however, with considerable constraints due to sample preparation requirements. Labelling of specific structures directly for electron microscopy using small gold nanoparticles (i.e. immunogold) has been used extensively. However, identification of specific entities solely based on electron contrast, and the differentiation from endogenous dense granules, remains challenging. Recently, the use of correlative cathodoluminescence electron microscopy (CCLEM) imaging based on luminescent inorganic nanocrystals has been proposed. While nanometric resolution can be reached for both the electron and the optical signal, high energy electron beams are potentially damaging to the sample. In this review, we discuss the opportunities of (volumetric) multi-color single protein labelling based on correlative cathodoluminescence electron microscopy, and its prospective impact on biomedical research in general. We elaborate on the potential challenges of correlative cathodoluminescence electron microscopy-based bioimaging and benchmark CCLEM against alternative high-resolution correlative imaging techniques.


Assuntos
Ouro , Nanopartículas Metálicas , Luminescência , Microscopia Eletrônica , Estudos Prospectivos
14.
ACS Photonics ; 7(1): 232-240, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31976357

RESUMO

Nitrogen-vacancy (NV) centers in diamond are reliable single-photon emitters, with applications in quantum technologies and metrology. Two charge states are known for NV centers, NV0 and NV-, with the latter being mostly studied due to its long electron spin coherence time. Therefore, control over the charge state of the NV centers is essential. However, an understanding of the dynamics between the different states still remains challenging. Here, conversion from NV- to NV0 due to electron-induced carrier generation is shown. Ultrafast pump-probe cathodoluminescence spectroscopy is presented for the first time, with electron pulses as pump and laser pulses as probe, to prepare and read out the NV states. The experimental data are explained with a model considering carrier dynamics (0.8 ns), NV0 spontaneous emission (20 ns), and NV0 → NV- back transfer (500 ms). The results provide new insights into the NV- → NV0 conversion dynamics and into the use of pump-probe cathodoluminescence as a nanoscale NV characterization tool.

15.
ACS Photonics ; 6(4): 1067-1072, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31024982

RESUMO

We investigate the nanoscale excitation of Ag nanocubes with coherent cathodoluminescence imaging spectroscopy (CL) to resolve the factors that determine the spatial resolution of CL as a deep-subwavelength imaging technique. The 10-30 keV electron beam coherently excites localized plasmons in 70 nm Ag cubes at 2.4 and 3.1 eV. The radiation from these plasmon modes is collected in the far-field together with the secondary electron intensity. CL line scans across the nanocubes show exponentially decaying tails away from the cube that reveal the evanescent coupling of the electron field to the resonant plasmon modes. The measured CL decay lengths range from 8 nm (10 keV) to 12 nm (30 keV) and differ from the calculated ones by only 1-3 nm. A statistical model of electron scattering inside the Ag nanocubes is developed to analyze the secondary electron images and compare them with the CL data. The Ag nanocube edges are derived from the CL line scans with a systematic error less than 3 nm. The data demonstrate that CL probes the electron-induced plasmon fields with nanometer accuracy.

16.
Nanomaterials (Basel) ; 7(2)2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28336860

RESUMO

There is great technological interest in elucidating the effect of particle size on the luminescence efficiency of doped rare earth oxides. This study demonstrates unambiguously that there is a size effect and that it is not dependent on the calcination temperature. The Y2O3:Eu and Gd2O3:Eu particles used in this study were synthesized using wet chemistry to produce particles ranging in size between 7 nm and 326 nm and a commercially available phosphor. These particles were characterized using three excitation methods: UV light at 250 nm wavelength, electron beam at 10 kV, and X-rays generated at 100 kV. Regardless of the excitation source, it was found that with increasing particle diameter there is an increase in emitted light. Furthermore, dense particles emit more light than porous particles. These results can be explained by considering the larger surface area to volume ratio of the smallest particles and increased internal surface area of the pores found in the large particles. For the small particles, the additional surface area hosts adsorbates that lead to non-radiative recombination, and in the porous particles, the pore walls can quench fluorescence. This trend is valid across calcination temperatures and is evident when comparing particles from the same calcination temperature.

17.
ACS Nano ; 11(2): 1604-1612, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28165711

RESUMO

Asymmetric nanoparticle trimers composed of particles with increasing diameter act as "plasmonic lenses" and have been predicted to exhibit ultrahigh confinement of electromagnetic energy in the space between the two smallest particles. Here we present an electrostatic self-assembly approach for creating gold nanoparticle trimers with an assembly yield of over 60%. We demonstrate that the trimer assembly leads to characteristic red-shifts and show the localization of the relevant plasmon modes by means of cathodoluminescence and electron energy loss spectroscopy. The results are analyzed in terms of surface plasmon hybridization.

18.
Sci Rep ; 5: 10911, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26038871

RESUMO

We present cathodoluminescence experiments that quantify the response of plasmonic Yagi-Uda antennas fabricated on one-dimensional silicon nitride waveguides as function of electron beam excitation position and emission wavelength. At the near-infrared antenna design wavelength cathodoluminescence signal robustly is strongest when exciting the antenna at the reflector element. Yet at just slightly shorter wavelengths the signal is highly variable from antenna to antenna and wavelength to wavelength. Hypothesizing that fabrication randomness is at play, we analyze the resilience of plasmon Yagi-Uda antennas to variations in element size of just 5 nm. While in our calculations the appearance of directivity is robust, both the obtained highest directivity and the wavelength at which it occurs vary markedly between realizations. The calculated local density of states is invariably high at the reflector for the design wavelength, but varies dramatically in spatial distribution for shorter wavelengths, consistent with the cathodoluminescence experiments.

19.
ACS Nano ; 9(2): 2049-60, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25629392

RESUMO

Gallium has recently been demonstrated as a phase-change plasmonic material offering UV tunability, facile synthesis, and a remarkable stability due to its thin, self-terminating native oxide. However, the dense irregular nanoparticle (NP) ensembles fabricated by molecular-beam epitaxy make optical measurements of individual particles challenging. Here we employ hyperspectral cathodoluminescence (CL) microscopy to characterize the response of single Ga NPs of various sizes within an irregular ensemble by spatially and spectrally resolving both in-plane and out-of-plane plasmonic modes. These modes, which include hybridized dipolar and higher-order terms due to phase retardation and substrate interactions, are correlated with finite difference time domain (FDTD) electrodynamics calculations that consider the Ga NP contact angle, substrate, and native Ga/Si surface oxidation. This study experimentally confirms previous theoretical predictions of plasmonic size-tunability in single Ga NPs and demonstrates that the plasmonic modes of interacting Ga nanoparticles can hybridize to produce strong hot spots in the ultraviolet. The controlled, robust UV plasmonic resonances of gallium nanoparticles are applicable to energy- and phase-specific applications such as optical memory, environmental remediation, and simultaneous fluorescence and surface-enhanced Raman spectroscopies.

20.
Nat Nanotechnol ; 10(5): 429-36, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25849788

RESUMO

Tomography has enabled the characterization of the Earth's interior, visualization of the inner workings of the human brain, and three-dimensional reconstruction of matter at the atomic scale. However, tomographic techniques that rely on optical excitation or detection are generally limited in their resolution by diffraction. Here, we introduce a tomographic technique--cathodoluminescence spectroscopic tomography--to probe optical properties in three dimensions with nanometre-scale spatial and spectral resolution. We first obtain two-dimensional cathodoluminescence maps of a three-dimensional nanostructure at various orientations. We then use the method of filtered back-projection to reconstruct the cathodoluminescence intensity at each wavelength. The resulting tomograms allow us to locate regions of efficient cathodoluminescence in three dimensions across visible and near-infrared wavelengths, with contributions from material luminescence and radiative decay of electromagnetic eigenmodes. The experimental signal can be further correlated with the radiative local density of optical states in particular regions of the reconstruction. We demonstrate how cathodoluminescence tomography can be used to achieve nanoscale three-dimensional visualization of light-matter interactions by reconstructing a three-dimensional metal-dielectric nanoresonator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA