Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 88(3): 393-401, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24508833

RESUMO

Tryptophan (TRP) is essential for many physiological processes, and its metabolism changes in some diseases such as infection and cancer. The most studied aspects of TRP metabolism are the kynurenine and serotonin pathways. A minor metabolic route, tryptamine and N,N-dimethyltryptamine (DMT) biosynthesis, has received far less attention, probably because of the very low amounts of these compounds detected only in some tissues, which has led them to be collectively considered as trace amines. In a previous study, we showed a metabolic interrelationship for TRP in melanoma cell lines. Here, we identified DMT and N,N-dimethyl-N-formyl-kynuramine (DMFK) in the supernatant of cultured SK-Mel-147 cells. Furthermore, when we added DMT to the cell culture, we found hydroxy-DMT (OH-DMT) and indole acetic acid (IAA) in the cell supernatant at 24 h. We found that SK-Mel-147 cells expressed mRNA for myeloperoxidase (MPO) and also had peroxidase activity. We further found that DMT oxidation was catalyzed by peroxidases. DMT oxidation by horseradish peroxidase, H2O2 and MPO from PMA-activated neutrophils produced DMFK, N,N-dimethyl-kynuramine (DMK) and OH-DMT. Oxidation of DMT by peroxidases apparently uses the common peroxidase cycle involving the native enzyme, compound I and compound II. In conclusion, this study describes a possible alternative metabolic pathway for DMT involving peroxidases that has not previously been described in humans and identifies DMT and metabolites in a melanoma cell line. The extension of these findings to other cell types and the biological effects of DMT and its metabolites on cell proliferation and function are key questions for future studies.


Assuntos
N,N-Dimetiltriptamina/biossíntese , Peroxidases/metabolismo , Linhagem Celular Tumoral , Peroxidase do Rábano Silvestre/química , Humanos , Peróxido de Hidrogênio/química , Melanoma , N,N-Dimetiltriptamina/química , Ativação de Neutrófilo , Neutrófilos/metabolismo , Peroxidase/metabolismo
2.
FEBS J ; 280(19): 4782-92, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23879623

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1), the rate-limiting enzyme of tryptophan catabolism, has been strongly associated with the progression of malignancy and poor survival in melanoma patients. As a result, IDO1 is a leading target for interventions aimed at restoring melanoma immune surveillance. Here, in a scenario involving the tryptophan catabolism, we report that melatonin biosynthesis is driven by 1-methyl-tryptophan (1-MT), a competitive inhibitor of IDO1, in human fibroblasts, melanocytes and melanoma cells. In addition to melatonin biosynthesis, 1-MT induced the expression of tryptophan hydroxylase, arylalkylamine-N-acetyltransferase and hydroxyindole O-methyltransferase mRNA in fibroblasts and melanocytes. We observed a great variability in the levels of IDO1 mRNA expression and kynurenine release between skin cells and melanoma cell lines in response to interferon-γ, a classical IDO1 inducer. In this setting, melatonin was shown to downregulate kynurenine production. Furthermore, in a condition of low basal activity of IDO1, it was observed that 1-MT, as well melatonin, inhibited the proliferation of human melanoma cells. Taken together, our results suggest that 1-MT may serve as more than just a tool to disrupt tumor immune escape (via the inhibition of IDO1) because it was shown to act directly on the proliferation of human melanoma cells and induce melatonin biosynthesis in the tumor milieu. Moreover, 1-MT-mediated inhibition of IDO occurs in normal skin and melanoma cells, which addresses the possibility that all cells in the skin microenvironment can be targeted by 1-MT. Our findings provide innovative approaches into understanding tumor therapy related to the control of tryptophan metabolism by 1-MT.


Assuntos
Cinurenina/metabolismo , Melatonina/metabolismo , Pele/metabolismo , Triptofano/análogos & derivados , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Pele/citologia , Triptofano/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA