Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell ; 184(20): 5163-5178.e24, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34559985

RESUMO

Rift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection. RVFV Gn directly binds to specific Lrp1 clusters and is glycosylation independent. Exogenous addition of murine RAP domain 3 (mRAPD3) and anti-Lrp1 antibodies neutralizes RVFV infection in taxonomically diverse cell lines. Mice treated with mRAPD3 and infected with pathogenic RVFV are protected from disease and death. A mutant mRAPD3 that binds Lrp1 weakly failed to protect from RVFV infection. Together, these data support Lrp1 as a host entry factor for RVFV infection and define a new target to limit RVFV infections.


Assuntos
Interações Hospedeiro-Patógeno , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Vírus da Febre do Vale do Rift/fisiologia , Internalização do Vírus , Animais , Especificidade de Anticorpos/imunologia , Sequência de Bases , Encéfalo/patologia , Encéfalo/virologia , Sistemas CRISPR-Cas/genética , Membrana Celular/metabolismo , Células Cultivadas , Glicoproteínas/metabolismo , Glicosaminoglicanos/metabolismo , Glicosilação , Humanos , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/metabolismo , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Glicoproteínas de Membrana/metabolismo , Camundongos , Ligação Proteica , Desnaturação Proteica , Febre do Vale de Rift/patologia , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/imunologia
2.
Nat Immunol ; 23(7): 1031-1041, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761082

RESUMO

The immune checkpoint receptor lymphocyte activation gene 3 protein (LAG3) inhibits T cell function upon binding to major histocompatibility complex class II (MHC class II) or fibrinogen-like protein 1 (FGL1). Despite the emergence of LAG3 as a target for next-generation immunotherapies, we have little information describing the molecular structure of the LAG3 protein or how it engages cellular ligands. Here we determined the structures of human and murine LAG3 ectodomains, revealing a dimeric assembly mediated by Ig domain 2. Epitope mapping indicates that a potent LAG3 antagonist antibody blocks interactions with MHC class II and FGL1 by binding to a flexible 'loop 2' region in LAG3 domain 1. We also defined the LAG3-FGL1 interface by mapping mutations onto structures of LAG3 and FGL1 and established that FGL1 cross-linking induces the formation of higher-order LAG3 oligomers. These insights can guide LAG3-based drug development and implicate ligand-mediated LAG3 clustering as a mechanism for disrupting T cell activation.


Assuntos
Antígenos CD/metabolismo , Ativação Linfocitária , Animais , Anticorpos , Fibrinogênio , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Imunoterapia , Ligantes , Camundongos , Receptores Imunológicos , Proteína do Gene 3 de Ativação de Linfócitos
3.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649232

RESUMO

Human respiratory syncytial virus (RSV) nonstructural protein 2 (NS2) inhibits host interferon (IFN) responses stimulated by RSV infection by targeting early steps in the IFN-signaling pathway. But the molecular mechanisms related to how NS2 regulates these processes remain incompletely understood. To address this gap, here we solved the X-ray crystal structure of NS2. This structure revealed a unique fold that is distinct from other known viral IFN antagonists, including RSV NS1. We also show that NS2 directly interacts with an inactive conformation of the RIG-I-like receptors (RLRs) RIG-I and MDA5. NS2 binding prevents RLR ubiquitination, a process critical for prolonged activation of downstream signaling. Structural analysis, including by hydrogen-deuterium exchange coupled to mass spectrometry, revealed that the N terminus of NS2 is essential for binding to the RIG-I caspase activation and recruitment domains. N-terminal mutations significantly diminish RIG-I interactions and result in increased IFNß messenger RNA levels. Collectively, our studies uncover a previously unappreciated regulatory mechanism by which NS2 further modulates host responses and define an approach for targeting host responses.


Assuntos
Proteína DEAD-box 58 , Helicase IFIH1 Induzida por Interferon , Interferon beta , Receptores Imunológicos , Proteínas não Estruturais Virais , Cristalografia por Raios X , Proteína DEAD-box 58/química , Proteína DEAD-box 58/metabolismo , Medição da Troca de Deutério , Células HEK293 , Humanos , Helicase IFIH1 Induzida por Interferon/química , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferon beta/química , Interferon beta/metabolismo , Ligação Proteica , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
4.
Med Teach ; : 1-9, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635469

RESUMO

INTRODUCTION: Whilst rarely researched, the authenticity with which Objective Structured Clinical Exams (OSCEs) simulate practice is arguably critical to making valid judgements about candidates' preparedness to progress in their training. We studied how and why an OSCE gave rise to different experiences of authenticity for different participants under different circumstances. METHODS: We used Realist evaluation, collecting data through interviews/focus groups from participants across four UK medical schools who participated in an OSCE which aimed to enhance authenticity. RESULTS: Several features of OSCE stations (realistic, complex, complete cases, sufficient time, autonomy, props, guidelines, limited examiner interaction etc) combined to enable students to project into their future roles, judge and integrate information, consider their actions and act naturally. When this occurred, their performances felt like an authentic representation of their clinical practice. This didn't work all the time: focusing on unavoidable differences with practice, incongruous features, anxiety and preoccupation with examiners' expectations sometimes disrupted immersion, producing inauthenticity. CONCLUSIONS: The perception of authenticity in OSCEs appears to originate from an interaction of station design with individual preferences and contextual expectations. Whilst tentatively suggesting ways to promote authenticity, more understanding is needed of candidates' interaction with simulation and scenario immersion in summative assessment.

5.
Med Teach ; : 1-9, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976711

RESUMO

INTRODUCTION: Ensuring equivalence in high-stakes performance exams is important for patient safety and candidate fairness. We compared inter-school examiner differences within a shared OSCE and resulting impact on students' pass/fail categorisation. METHODS: The same 6 station formative OSCE ran asynchronously in 4 medical schools, with 2 parallel circuits/school. We compared examiners' judgements using Video-based Examiner Score Comparison and Adjustment (VESCA): examiners scored station-specific comparator videos in addition to 'live' student performances, enabling 1/controlled score comparisons by a/examiner-cohorts and b/schools and 2/data linkage to adjust for the influence of examiner-cohorts. We calculated score impact and change in pass/fail categorisation by school. RESULTS: On controlled video-based comparisons, inter-school variations in examiners' scoring (16.3%) were nearly double within-school variations (8.8%). Students' scores received a median adjustment of 5.26% (IQR 2.87-7.17%). The impact of adjusting for examiner differences on students' pass/fail categorisation varied by school, with adjustment reducing failure rate from 39.13% to 8.70% (school 2) whilst increasing failure from 0.00% to 21.74% (school 4). DISCUSSION: Whilst the formative context may partly account for differences, these findings query whether variations may exist between medical schools in examiners' judgements. This may benefit from systematic appraisal to safeguard equivalence. VESCA provided a viable method for comparisons.

6.
Support Care Cancer ; 31(7): 442, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402060

RESUMO

BACKGROUND: Exercise is an effective adjuvant therapy that can alleviate treatment-related toxicities for men with prostate cancer (PC). However, the feasibility of delivering exercise training to men with advanced disease and the wider impact on clinical outcomes remain unknown. The purpose of the EXACT trial was to determine the feasibility and effects of home-based exercise training in men with metastatic castrate-resistant prostate cancer (mCRPC). METHODS: Patients with mCRPC receiving ADT + an androgen receptor pathway inhibitor (ARPI) were prescribed 12 weeks of home-based, remotely monitored, moderate intensity, aerobic and resistance exercise. Feasibility was assessed using recruitment, retention and adherence rates. Safety and adverse events were monitored throughout, with functional and patient-reported outcomes captured at baseline, post-intervention and at 3-month follow-up. RESULTS: From the 117 screened, 49 were deemed eligible and approached, with 30 patients providing informed consent (61% recruitment rate). Of those who consented, 28 patients completed baseline assessments, with 24 patients completing the intervention and 22 completing follow-up (retention rates: 86% and 79% respectively). Task completion was excellent throughout, with no intervention-related adverse events recorded. Self-reported adherence to the overall intervention was 82%. Exercise training decreased mean body mass (-1.5%), improved functional fitness (> 10%) and improved several patient-reported outcomes including clinically meaningful changes in fatigue (p = 0.042), FACT-G (p = 0.054) and FACT-P (p = 0.083), all with moderate effect sizes. CONCLUSION: Home-based exercise training, with weekly remote monitoring, was feasible and safe for men with mCRPC being treated with an ARPI. Given that treatment-related toxicities accumulate throughout the course of treatment, and as a result, negatively impact functional fitness and health-related quality of life (HRQoL), it was positive that exercise training improved or prevented a decline in these clinically important variables and could better equip patients for future treatment. Collectively, these preliminary feasibility findings support the need for a definitive, larger RCT, which downstream may lead to the inclusion of home-based exercise training as part of adjuvant care for mCRPC.


Assuntos
Terapia por Exercício , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Receptores Androgênicos , Qualidade de Vida , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Estudos de Viabilidade , Antagonistas de Androgênios/efeitos adversos , Exercício Físico , Adjuvantes Imunológicos
7.
J Lipid Res ; 61(5): 767-777, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32127396

RESUMO

Many clinical studies and epidemiological investigations have clearly demonstrated that women are twice as likely to develop cholesterol gallstones as men, and oral contraceptives and other estrogen therapies dramatically increase that risk. Further, animal studies have revealed that estrogen promotes cholesterol gallstone formation through the estrogen receptor (ER) α, but not ERß, pathway. More importantly, some genetic and pathophysiological studies have found that G protein-coupled estrogen receptor (GPER) 1 is a new gallstone gene, Lith18, on chromosome 5 in mice and produces additional lithogenic actions, working independently of ERα, to markedly increase cholelithogenesis in female mice. Based on computational modeling of GPER, a novel series of GPER-selective antagonists were designed, synthesized, and subsequently assessed for their therapeutic effects via calcium mobilization, cAMP, and ERα and ERß fluorescence polarization binding assays. From this series of compounds, one new compound, 2-cyclohexyl-4-isopropyl-N-(4-methoxybenzyl)aniline (CIMBA), exhibits superior antagonism and selectivity exclusively for GPER. Furthermore, CIMBA reduces the formation of 17ß-estradiol-induced gallstones in a dose-dependent manner in ovariectomized mice fed a lithogenic diet for 8 weeks. At 32 µg/day/kg CIMBA, no gallstones are found, even in ovariectomized ERα (-/-) mice treated with 6 µg/day 17ß-estradiol and fed the lithogenic diet for 8 weeks. In conclusion, CIMBA treatment protects against the formation of estrogen-induced cholesterol gallstones by inhibiting the GPER signaling pathway in female mice. CIMBA may thus be a new agent for effectively treating cholesterol gallstone disease in women.


Assuntos
Colesterol/metabolismo , Estrogênios/farmacologia , Cálculos Biliares/induzido quimicamente , Cálculos Biliares/prevenção & controle , Receptores de Estrogênio/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Feminino , Cálculos Biliares/metabolismo , Células HL-60 , Humanos , Camundongos , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Mod Pathol ; 30(9): 1287-1298, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28621318

RESUMO

Around 12-15% of patients with locally advanced rectal cancer undergo a pathologically complete response (tumor regression grade 4) to long-course preoperative chemoradiotherapy; the remainder exhibit a spectrum of tumor regression (tumor regression grade 1-3). Understanding therapy-related transcriptional alterations may enable better prediction of response as measured by progression-free and overall survival, in addition to aiding the development of improved strategies based on the underlying biology of the disease. To this end, we performed high-throughput gene expression profiling in 40 pairs of formalin-fixed paraffin-embedded rectal cancer biopsies and matched resections following long-course preoperative chemoradiotherapy (discovery cohort). Differential gene expression analysis was performed contrasting tumor regression grades in resections. Enumeration of the tumor microenvironment cell population was undertaken using in silico analysis of the transcriptional data, and real-time PCR validation of NCR1 undertaken. Immunohistochemistry and survival analysis was used to measure CD56+ cell populations in an independent cohort (n=150). Gene expression traits observed following long-course preoperative chemoradiotherapy in the discovery cohort suggested an increased abundance of natural killer cells in tumors that displayed a clinical response to CRT in a tumor regression grade-dependent manner. CD56+ natural killer-cell populations were measured by immunohistochemistry and found to be significantly higher in tumor regression grade 3 patients compared with tumor regression grade 1-2 in the validation cohort. Furthermore, it was observed that patients positive for CD56 cells after therapy had a better overall survival (HR=0.282, 95% CI=0.109-0.729, χ2=7.854, P=0.005). In conclusion, we have identified a novel post-therapeutic natural killer-like transcription signature in patients responding to long-course preoperative chemoradiotherapy. Furthermore, patients with a higher abundance of CD56-positive natural killer cells post long-course preoperative chemoradiotherapy had better overall survival. Therefore, harnessing a natural killer-like response after therapy may improve outcomes for locally advanced rectal cancer patients. Finally, we hypothesize that future assessment of this natural killer-like response in on-treatment biopsy material may inform clinical decision-making for treatment duration.


Assuntos
Biomarcadores Tumorais/genética , Quimiorradioterapia Adjuvante , Perfilação da Expressão Gênica/métodos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Terapia Neoadjuvante , Neoplasias Retais/genética , Neoplasias Retais/terapia , Transcriptoma , Biomarcadores Tumorais/metabolismo , Biópsia , Antígeno CD56/metabolismo , Quimiorradioterapia Adjuvante/efeitos adversos , Quimiorradioterapia Adjuvante/mortalidade , Distribuição de Qui-Quadrado , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estimativa de Kaplan-Meier , Células Matadoras Naturais/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Terapia Neoadjuvante/efeitos adversos , Terapia Neoadjuvante/mortalidade , Gradação de Tumores , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Neoplasias Retais/imunologia , Neoplasias Retais/mortalidade , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Microambiente Tumoral
9.
Cells ; 13(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920634

RESUMO

BACKGROUND: Identifying cells engaged in fundamental cellular processes, such as proliferation or living/death statuses, is pivotal across numerous research fields. However, prevailing methods relying on molecular biomarkers are constrained by high costs, limited specificity, protracted sample preparation, and reliance on fluorescence imaging. METHODS: Based on cellular morphology in phase contrast images, we developed a deep-learning model named Detector of Mitosis, Apoptosis, Interphase, Necrosis, and Senescence (D-MAINS). RESULTS: D-MAINS utilizes machine learning and image processing techniques, enabling swift and label-free categorization of cell death, division, and senescence at a single-cell resolution. Impressively, D-MAINS achieved an accuracy of 96.4 ± 0.5% and was validated with established molecular biomarkers. D-MAINS underwent rigorous testing under varied conditions not initially present in the training dataset. It demonstrated proficiency across diverse scenarios, encompassing additional cell lines, drug treatments, and distinct microscopes with different objective lenses and magnifications, affirming the robustness and adaptability of D-MAINS across multiple experimental setups. CONCLUSIONS: D-MAINS is an example showcasing the feasibility of a low-cost, rapid, and label-free methodology for distinguishing various cellular states. Its versatility makes it a promising tool applicable across a broad spectrum of biomedical research contexts, particularly in cell death and oncology studies.


Assuntos
Apoptose , Senescência Celular , Aprendizado Profundo , Interfase , Mitose , Necrose , Humanos , Linhagem Celular Tumoral , Neoplasias/patologia , Neoplasias/metabolismo , Processamento de Imagem Assistida por Computador/métodos
10.
Radiother Oncol ; 190: 110004, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972738

RESUMO

PURPOSE: Despite technological advances in radiotherapy (RT), cardiotoxicity remains a common complication in patients with lung, oesophageal and breast cancers. Statin therapy has been shown to have pleiotropic properties beyond its lipid-lowering effects. Previous murine models have shown statin therapy can reduce short-term functional effects of whole-heart irradiation. In this study, we assessed the efficacy of atorvastatin in protecting against the late effects of radiation exposure on systolic function, cardiac conduction, and atrial natriuretic peptide (ANP) following a clinically relevant partial-heart radiation exposure. MATERIALS AND METHODS: Female, 12-week old, C57BL/6j mice received an image-guided 16 Gy X-ray field to the base of the heart using a small animal radiotherapy research platform (SARRP), with or without atorvastatin from 1 week prior to irradiation until the end of the experiment. The animals were followed for 50 weeks with longitudinal transthoracic echocardiography (TTE) and electrocardiography (ECG) every 10 weeks, and plasma ANP every 20 weeks. RESULTS: At 30-50 weeks, mild left ventricular systolic function impairment observed in the RT control group was less apparent in animals receiving atorvastatin. ECG analysis demonstrated prolongation of components of cardiac conduction related to the heart base at 10 and 30 weeks in the RT control group but not in animals treated with atorvastatin. In contrast to systolic function, conduction disturbances resolved at later time-points with radiation alone. ANP reductions were lower in irradiated animals receiving atorvastatin at 30 and 50 weeks. CONCLUSIONS: Atorvastatin prevents left ventricular systolic dysfunction, and the perturbation of cardiac conduction following partial heart irradiation. If confirmed in clinical studies, these data would support the use of statin therapy for cardioprotection during thoracic radiotherapy.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Disfunção Ventricular Esquerda , Humanos , Feminino , Camundongos , Animais , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Camundongos Endogâmicos C57BL , Coração/efeitos da radiação , Modelos Animais de Doenças
11.
Radiother Oncol ; 192: 110085, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184145

RESUMO

BACKGROUND AND PURPOSE: Symptomatic arrhythmia is common following radiotherapy for non-small cell lung cancer (NSCLC), frequently resulting in morbidity and hospitalization. Modern treatment planning technology theoretically allows sparing of cardiac substructures. Atrial fibrillation (AF) comprises the majority of post-radiotherapy arrhythmias, but efforts to prevent this cardiotoxicity have been limited as the causative cardiac substructure is not known. In this study we investigated if incidental radiation dose to the pulmonary veins (PVs) is associated with AF. MATERIAL AND METHODS: A single-centre study of patients completing contemporary (chemo)radiation for NSCLC, with modern planning techniques. Oncology, cardiology and death records were examined, and AF events were verified by a cardiologist. Cardiac substructures were contoured on planning scans for retrospective dose analysis. RESULTS: In 420 eligible patients with NSCLC treated with intensity-modulated (70%) or 3D-conformal (30%) radiotherapy with a median OS of 21.8 months (IQR 10.8-35.1), there were 26 cases of new AF (6%). All cases were grade 3 except two cases of grade 4. Dose metrics for both the left (V55) and right (V10) PVs were associated with the incidence of new AF. Metrics remained statistically significant after accounting for the competing risk of death and cardiovascular covariables for both the left (HR 1.02, 95%CI 1.00-1.03, p = 0.005) and right (HR 1.01 (95%CI 1.00-1.02, p = 0.033) PVs. CONCLUSION: Radiation dose to the PVs during treatment of NSCLC was associated with the onset of AF. Actively sparing the PVs during treatment planning could reduce the incidence of AF during follow-up, and screening for AF may be warranted for select cases.


Assuntos
Fibrilação Atrial , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Veias Pulmonares , Humanos , Fibrilação Atrial/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Estudos Retrospectivos , Neoplasias Pulmonares/radioterapia , Resultado do Tratamento
12.
Cancer Res Commun ; 4(5): 1174-1188, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626341

RESUMO

p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in approximately 50% of all human cancers. In its canonical role, p16 inhibits the G1-S-phase cell cycle progression through suppression of cyclin-dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. However, the broader impact of p16/CDKN2A loss on other nucleotide metabolic pathways and potential therapeutic targets remains unexplored. Using CRISPR knockout libraries in isogenic human and mouse melanoma cell lines, we determined several nucleotide metabolism genes essential for the survival of cells with loss of p16/CDKN2A. Consistently, many of these genes are upregulated in melanoma cells with p16 knockdown or endogenously low CDKN2A expression. We determined that cells with low p16/CDKN2A expression are sensitive to multiple inhibitors of de novo purine synthesis, including antifolates. Finally, tumors with p16 knockdown were more sensitive to the antifolate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2Alow tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents. SIGNIFICANCE: Antimetabolites were the first chemotherapies, yet many have failed in the clinic due to toxicity and poor patient selection. Our data suggest that p16 loss provides a therapeutic window to kill cancer cells with widely-used antifolates with relatively little toxicity.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Purinas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Metotrexato/farmacologia , Purinas/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico
13.
bioRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370789

RESUMO

Homologous recombination (HR) deficiency enhances sensitivity to DNA damaging agents commonly used to treat cancer. In HR-proficient cancers, metabolic mechanisms driving response or resistance to DNA damaging agents remain unclear. Here we identified that depletion of alpha-ketoglutarate (αKG) sensitizes HR-proficient cells to DNA damaging agents by metabolic regulation of histone acetylation. αKG is required for the activity of αKG-dependent dioxygenases (αKGDDs), and prior work has shown that changes in αKGDD affect demethylases. Using a targeted CRISPR knockout library consisting of 64 αKGDDs, we discovered that Trimethyllysine Hydroxylase Epsilon (TMLHE), the first and rate-limiting enzyme in de novo carnitine synthesis, is necessary for proliferation of HR-proficient cells in the presence of DNA damaging agents. Unexpectedly, αKG-mediated TMLHE-dependent carnitine synthesis was required for histone acetylation, while histone methylation was affected but dispensable. The increase in histone acetylation via αKG-dependent carnitine synthesis promoted HR-mediated DNA repair through site- and substrate-specific histone acetylation. These data demonstrate for the first time that HR-proficiency is mediated through αKG directly influencing histone acetylation via carnitine synthesis and provide a metabolic avenue to induce HR-deficiency and sensitivity to DNA damaging agents.

14.
Int J Radiat Oncol Biol Phys ; 115(2): 453-463, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985456

RESUMO

PURPOSE: Radiation cardiotoxicity (RC) is a clinically significant adverse effect of treatment for patients with thoracic malignancies. Clinical studies in lung cancer have indicated that heart substructures are not uniformly radiosensitive, and that dose to the heart base drives RC. In this study, we aimed to characterize late changes in gene expression using spatial transcriptomics in a mouse model of base regional radiosensitivity. METHODS AND MATERIALS: An aged female C57BL/6 mouse was irradiated with 16 Gy delivered to the cranial third of the heart using a 6 × 9 mm parallel opposed beam geometry on a small animal radiation research platform, and a second mouse was sham-irradiated. After echocardiography, whole hearts were collected at 30 weeks for spatial transcriptomic analysis to map gene expression changes occurring in different regions of the partially irradiated heart. Cardiac regions were manually annotated on the capture slides and the gene expression profiles compared across different regions. RESULTS: Ejection fraction was reduced at 30 weeks after a 16 Gy irradiation to the heart base, compared with the sham-irradiated controls. There were markedly more significant gene expression changes within the irradiated regions compared with nonirradiated regions. Variation was observed in the transcriptomic effects of radiation on different cardiac base structures (eg, between the right atrium [n = 86 dysregulated genes], left atrium [n = 96 dysregulated genes], and the vasculature [n = 129 dysregulated genes]). Disrupted biological processes spanned extracellular matrix as well as circulatory, neuronal, and contractility activities. CONCLUSIONS: This is the first study to report spatially resolved gene expression changes in irradiated tissues. Examination of the regional radiation response in the heart can help to further our understanding of the cardiac base's radiosensitivity and support the development of actionable targets for pharmacologic intervention and biologically relevant dose constraints.


Assuntos
Pulmão , Transcriptoma , Animais , Feminino , Camundongos , Relação Dose-Resposta à Radiação , Coração , Pulmão/efeitos da radiação , Camundongos Endogâmicos C57BL
15.
J Cell Biol ; 222(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36399181

RESUMO

Macropinocytosis is a nonspecific endocytic process that may enhance cancer cell survival under nutrient-poor conditions. Ataxia-Telangiectasia mutated (ATM) is a tumor suppressor that has been previously shown to play a role in cellular metabolic reprogramming. We report that the suppression of ATM increases macropinocytosis to promote cancer cell survival in nutrient-poor conditions. Combined inhibition of ATM and macropinocytosis suppressed proliferation and induced cell death both in vitro and in vivo. Supplementation of ATM-inhibited cells with amino acids, branched-chain amino acids (BCAAs) in particular, abrogated macropinocytosis. Analysis of ATM-inhibited cells in vitro demonstrated increased BCAA uptake, and metabolomics of ascites and interstitial fluid from tumors indicated decreased BCAAs in the microenvironment of ATM-inhibited tumors. These data reveal a novel basis of ATM-mediated tumor suppression whereby loss of ATM stimulates protumorigenic uptake of nutrients in part via macropinocytosis to promote cancer cell survival and reveal a potential metabolic vulnerability of ATM-inhibited cells.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias , Pinocitose , Humanos , Adaptação Fisiológica , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reprogramação Celular , Neoplasias/metabolismo , Microambiente Tumoral , Aminoácidos de Cadeia Ramificada/metabolismo , Metabolômica , Animais , Camundongos , Linhagem Celular Tumoral
16.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961201

RESUMO

DNA damage and cellular metabolism are intricately linked with bidirectional feedback. Two of the main effectors of the DNA damage response and control of cellular metabolism are ATR and mTORC1, respectively. Prior work has placed ATR upstream of mTORC1 during replication stress, yet the direct mechanism for how mTORC1 is activated in this context remain unclear. We previously published that p16-low cells have mTORC1 hyperactivation, which in part promotes their proliferation. Using this model, we found that ATR, but not ATM, is upstream of mTORC1 activation via de novo cholesterol synthesis and is associated with increased lanosterol synthase (LSS). Indeed, p16-low cells showed increased cholesterol abundance. Additionally, knockdown of either ATR or LSS decreased mTORC1 activity. Decreased mTORC1 activity due to ATR knockdown was rescued by cholesterol supplementation. Finally, using both LSS inhibitors and multiple FDA-approved de novo cholesterol synthesis inhibitors, we found that the de novo cholesterol biosynthesis pathway is a metabolic vulnerability of p16-low cells. Together, our data provide new evidence coupling the DNA damage response and cholesterol metabolism and demonstrate the feasibility of using FDA-approved cholesterol-lowering drugs in tumors with loss of p16.

17.
bioRxiv ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37503050

RESUMO

p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in ~50% of all human cancers. In its canonical role, p16 inhibits the G1-S phase cell cycle progression through suppression of cyclin dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. Whether other nucleotide metabolic genes and pathways are affected by p16/CDKN2A loss and if these can be specifically targeted in p16/CDKN2A-low tumors has not been previously explored. Using CRISPR KO libraries in multiple isogenic human and mouse melanoma cell lines, we determined that many nucleotide metabolism genes are negatively enriched in p16/CDKN2A knockdown cells compared to controls. Indeed, many of the genes that are required for survival in the context of low p16/CDKN2A expression based on our CRISPR screens are upregulated in p16 knockdown melanoma cells and those with endogenously low CDKN2A expression. We determined that cells with low p16/Cdkn2a expression are sensitive to multiple inhibitors of de novo purine synthesis, including anti-folates. Tumors with p16 knockdown were more sensitive to the anti-folate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2A-low tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents.

18.
Radiother Oncol ; 186: 109762, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348608

RESUMO

INTRODUCTION: Radiation cardiotoxicity is a dose-limiting toxicity and major survivorship issue for patients with non-small cell lung cancer (NSCLC) completing curative-intent radiotherapy, however patients' cardiovascular baseline is not routinely optimised prior to treatment. In this study we examined the impact of statin therapy on overall survival and post-radiotherapy cardiac events. METHODS: Patients treated between 2015-2020 at a regional center were identified. Clinical notes were interrogated for baseline patient, tumor and cardiac details, and both follow-up cancer control and cardiac events. Three cardiologists verified cardiac events. Radiotherapy planning scans were retrieved for application of validated deep learning-based autosegmentation. Pre-specified Cox regression analyses were generated with varying degrees of adjustment for overall survival. Fine and Gray regression for the risk of cardiac events, accounting for the competing risk of death and cardiac covariables was undertaken. RESULTS: Statin therapy was prescribed to 59% of the 478 included patients. The majority (88%) of patients not prescribed a statin had at least one indication for statin therapy according to cardiovascular guidelines. In total, 340 patients (71%) died and 79 patients (17%) experienced a cardiac event. High-intensity (HR 0.68, 95%CI 0.50-0.91, p = 0.012) and medium-intensity (HR 0.70, 95%CI 0.51-0.97, p = 0.033) statin therapy were associated with improved overall survival after adjustment for patient, cancer, treatment, response and cardiovascular clinical factors. There were no consistent differences in the rate or grade of cardiac events according to statin intensity. CONCLUSIONS: Statin therapy is associated with improved overall survival in patients receiving curative-intent radiotherapy for NSCLC, and there is evidence of a dose-response relationship. This study highlights the importance of a pre-treatment cardiovascular risk assessment in this cohort. Further studies are needed to examine if statin therapy is cardioprotective in patients undergoing treatment for NSCLC with considerable incidental cardiac radiation dose and a low baseline cardiac risk.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Cardiotoxicidade/etiologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Coração , Estudos Retrospectivos
19.
Int J Radiat Oncol Biol Phys ; 117(3): 594-609, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893820

RESUMO

PURPOSE: The aim of this study was to establish the feasibility of a randomized clinical trial comparing SABR with prostate-only (P-SABR) or with prostate plus pelvic lymph nodes (PPN-SABR) in patients with unfavorable intermediate- or high-risk localized prostate cancer and to explore potential toxicity biomarkers. METHODS AND MATERIALS: Thirty adult men with at least 1 of the following features were randomized 1:1 to P-SABR or PPN-SABR: clinical magnetic resonance imaging stage T3a N0 M0, Gleason score ≥7 (4+3), and prostate-specific antigen >20 ng/mL. P-SABR patients received 36.25 Gy/5 fractions/29 days, and PPN-SABR patients received 25 Gy/5 fractions to pelvic nodes, with the final cohort receiving a boost to the dominant intraprostatic lesion of 45 to 50 Gy. Phosphorylated gamma-H2AX (γH2AX) foci numbers, citrulline levels, and circulating lymphocyte counts were quantified. Acute toxicity information (Common Terminology Criteria for Adverse Events, version 4.03) was collected weekly at each treatment and at 6 weeks and 3 months. Physician-reported late Radiation Therapy Oncology Group (RTOG) toxicity was recorded from 90 days to 36 months postcompletion of SABR. Patient-reported quality of life (Expanded Prostate Cancer Index Composite and International Prostate Symptom Score) scores were recorded with each toxicity time point. RESULTS: The target recruitment was achieved, and treatment was successfully delivered in all patients. A total of 0% and 6.7% (P-SABR) and 6.7% and 20.0% (PPN-SABR) experienced acute grade ≥2 gastrointestinal (GI) and genitourinary (GU) toxicity, respectively. At 3 years, 6.7% and 6.7% (P-SABR) and 13.3% and 33.3% (PPN-SABR) had experienced late grade ≥2 GI and GU toxicity, respectively. One patient (PPN-SABR) had late grade 3 GU toxicity (cystitis and hematuria). No other grade ≥3 toxicity was observed. In addition, 33.3% and 60% (P-SABR) and 64.3% and 92.9% (PPN-SABR) experienced a minimally clinically important change in late Expanded Prostate Cancer Index Composite bowel and urinary summary scores, respectively. γH2AX foci numbers at 1 hour after the first fraction were significantly higher in the PPN-SABR arm compared with the P-SABR arm (P = .04). Patients with late grade ≥1 GI toxicity had significantly greater falls in circulating lymphocytes (12 weeks post-radiation therapy, P = .01) and a trend toward higher γH2AX foci numbers (P = .09) than patients with no late toxicity. Patients with late grade ≥1 bowel toxicity and late diarrhea experienced greater falls in citrulline levels (P = .05). CONCLUSIONS: A randomized trial comparing P-SABR with PPN-SABR is feasible with acceptable toxicity. Correlations of γH2AX foci, lymphocyte counts, and citrulline levels with irradiated volume and toxicity suggest potential as predictive biomarkers. This study has informed a multicenter, randomized, phase 3 clinical trial in the United Kingdom.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/efeitos da radiação , Neoplasias da Próstata/patologia , Qualidade de Vida , Estudos de Viabilidade , Citrulina/uso terapêutico
20.
Radiother Oncol ; 184: 109680, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37105303

RESUMO

BACKGROUND AND PURPOSE: Cardiac arrhythmia is a recognised potential complication of thoracic radiotherapy, but the responsible cardiac substructures for arrhythmogenesis have not been identified. Arrhythmogenic tissue is commonly located in the pulmonary veins (PVs) of cardiology patients with arrhythmia, however these structures are not currently considered organs-at-risk during radiotherapy planning. A standardised approach to their delineation was developed and evaluated. MATERIALS AND METHODS: The gross and radiological anatomy relevant to atrial fibrillation was derived from cardiology and radiology literature by a multidisciplinary team. A region of interest and contouring instructions for radiotherapy computed tomography scans were iteratively developed and subsequently evaluated. Radiation oncologists (n = 5) and radiation technologists (n = 2) contoured the PVs on the four-dimensional planning datasets of five patients with locally advanced lung cancer treated with 1.8-2.75 Gy fractions. Contours were compared to reference contours agreed by the researchers using geometric and dosimetric parameters. RESULTS: The mean dose to the PVs was 35% prescription dose. Geometric and dosimetric similarity of the observer contours with reference contours was fair, with an overall mean Dice of 0.80 ± 0.02. The right superior PV (mean DSC 0.83 ± 0.02) had better overlap than the left (mean DSC 0.80 ± 0.03), but the inferior PVs were equivalent (mean DSC of 0.78). The mean difference in mean dose was 0.79 Gy ± 0.71 (1.46% ± 1.25). CONCLUSION: A PV atlas with multidisciplinary approval led to reproducible delineation for radiotherapy planning, supporting the utility of the atlas in future clinical radiotherapy cardiotoxicity research encompassing arrhythmia endpoints.


Assuntos
Veias Pulmonares , Humanos , Veias Pulmonares/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Coração , Tomografia Computadorizada por Raios X/métodos , Arritmias Cardíacas , Órgãos em Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA