Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(31): 13573-13581, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32662645

RESUMO

The Birch reduction is a powerful synthetic methodology that uses solvated electrons to convert inert arenes to 1,4-cyclohexadienes-valuable intermediates for building molecular complexity. Birch reductions traditionally employ alkali metals dissolved in ammonia to produce a solvated electron for the reduction of unactivated arenes such as benzene (Ered < -3.42 V vs SCE). Photoredox catalysts have been gaining popularity in highly reducing applications, but none have been reported to demonstrate reduction potentials powerful enough to reduce benzene. Here, we introduce benzo[ghi]perylene imides as new organic photoredox catalysts for Birch reductions performed at ambient temperature and driven by visible light from commercially available LEDs. Using low catalyst loadings (<1 mol percent), benzene and other functionalized arenes were selectively transformed to 1,4-cyclohexadienes in moderate to good yields in a completely metal-free reaction. Mechanistic studies support that this unprecedented visible-light-induced reactivity is enabled by the ability of the organic photoredox catalyst to harness the energy from two visible-light photons to affect a single, high-energy chemical transformation.


Assuntos
Derivados de Benzeno/química , Cicloexenos/química , Imidas/química , Luz , Perileno/análogos & derivados , Catálise , Estrutura Molecular , Oxirredução , Perileno/química , Processos Fotoquímicos
2.
J Acoust Soc Am ; 144(5): 2926, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30522289

RESUMO

Inversions of models of broadband acoustic scattering to detect and quantify weakly scattering targets, such as oil droplets in seawater, require precise knowledge of the physical properties that determine scattering. When the characteristic impedance contrast between a target and the surrounding medium is weak, small differences between the true and modeled impedance can cause significant errors in modeled scattering. For crude oil, currently available empirical models of density and sound speed are derived from measurements made at reservoir conditions (high temperature and pressure), which may not be relevant to oceanographic conditions due to phase changes in the oil. Measurements of the density and sound speed, as well as thermal characterization of phase changes via differential scanning calorimetry, of four crude oils at oceanographically relevant temperatures and pressures were made and compared to a commonly used empirical model for sound speed and density. Significant deviations between the measured and modeled values were found and different empirically fit models were developed. A literature review of sound speed data was also performed, and the innovative empirical model shows improvement over the commonly used empirical model for both the data measured here and the measurements in the literature.

3.
Inorg Chem ; 55(19): 9493-9496, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27632245

RESUMO

Porphyrin-cored polymer nanoparticles (PCPNs) were synthesized and characterized to investigate their utility as heme protein models. Created using collapsible heme-centered star polymers containing photodimerizable anthracene units, these systems afford model heme cofactors buried within hydrophobic, macromolecular environments. Spectroscopic interrogations demonstrate that PCPNs display redox and ligand-binding reactivity similar to that of native systems and thus are potential candidates for modeling biological heme iron coordination.


Assuntos
Complexos de Coordenação/química , Compostos Férricos/química , Nanopartículas/química , Polímeros/química , Porfirinas/química , Complexos de Coordenação/síntese química , Compostos Férricos/síntese química , Heme/química , Polímeros/síntese química , Porfirinas/síntese química
4.
Macromolecules ; 54(10): 4507-4516, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34483366

RESUMO

Photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP) is a controlled radical polymerization methodology catalyzed by organic photoredox catalysts (PCs). In an efficient O-ATRP system, good control over molecular weight with an initiator efficiency (I* = M n,theo/M n,exp × 100%) near unity is achieved, and the synthesized polymers possess a low dispersity (D). N,N-Diaryl dihydrophenazine catalysts typically produce polymers with low dispersity (D < 1.3) but with less than unity molecular weight control (I* ~ 60-80%). This work explores the termination reactions that lead to decreased control over polymer molecular weight and identifies a reaction leading to radical addition to the phenazine core. This reaction can occur with radicals generated through reduction of the ATRP initiator or the polymer chain end. In addition to causing a decrease in I*, this reactivity modifies the properties of the PC, ultimately impacting polymerization control in O-ATRP. With this insight in mind, a new family of core-substituted N,N-diaryl dihydrophenazines is synthesized from commercially available ATRP initiators and employed in O-ATRP. These new core-substituted PCs improve both I* and D in the O-ATRP of MMA, while minimizing undesired side reactions during the polymerization. Further, the ability of one core-substituted PC to operate at low catalyst loadings is demonstrated, with minimal loss of polymerization control down to 100 ppm (weight average molecular weight [M w] = 10.8 kDa, D = 1.17, I* = 104% vs M w = 8.26, D = 1.10, I* = 107% at 1000 ppm) and signs of a controlled polymerization down to 10 ppm of the catalyst (M w = 12.1 kDa, D = 1.36, I* = 107%).

5.
Macromolecules ; 52(2): 747-754, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30778265

RESUMO

Photoinduced organocatalyzed atom-transfer radical polymerization (O-ATRP) is a controlled radical polymerization methodology that can be mediated by organic photoredox catalysts under the influence of light. However, typical O-ATRP systems require relatively high catalyst loadings (1000 ppm) to achieve control over the polymerization. Here, new core-extended diaryl dihydrophenazine photoredox catalysts were developed for O-ATRP and demonstrated to efficiently operate at low catalyst loadings of 5-50 ppm to produce polymers with excellent molecular weight control and low dispersity, while achieving near-quantitative initiator efficiency. Photophysical and electrochemical properties of the catalysts were computationally predicted and experimentally measured to correlate these properties with improved catalytic performance. Furthermore, these catalysts were utilized to synthesize materials with complex architectures, such as triblock copolymers and star polymers. To demonstrate their broad utility, polymerizations employing these catalysts were successfully scaled up to 5 g and revealed to efficiently operate under air.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA