Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 153(5): 1120-33, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23683579

RESUMO

Cell-cell communication is an important mechanism for information exchange promoting cell survival for the control of features such as population density and differentiation. We determined that Plasmodium falciparum-infected red blood cells directly communicate between parasites within a population using exosome-like vesicles that are capable of delivering genes. Importantly, communication via exosome-like vesicles promotes differentiation to sexual forms at a rate that suggests that signaling is involved. Furthermore, we have identified a P. falciparum protein, PfPTP2, that plays a key role in efficient communication. This study reveals a previously unidentified pathway of P. falciparum biology critical for survival in the host and transmission to mosquitoes. This identifies a pathway for the development of agents to block parasite transmission from the human host to the mosquito.


Assuntos
Comunicação Celular , Eritrócitos/patologia , Eritrócitos/parasitologia , Malária Falciparum/patologia , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Actinas/antagonistas & inibidores , Animais , Culicidae/parasitologia , Resistência a Medicamentos , Exossomos/parasitologia , Humanos , Microtúbulos/efeitos dos fármacos , Plasmídeos/genética , Plasmodium falciparum/crescimento & desenvolvimento , Transdução de Sinais , Trofozoítos/fisiologia
2.
BMC Med Educ ; 22(1): 821, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36447223

RESUMO

BACKGROUND: Students with developed self-regulated learning (SRL) skills demonstrate an ability to set individualized educational goals, select optimal learning strategies for reaching these goals, and reflect on overall progress. The primary aims of this study were to investigate first-year medical students' perceived utility of a self-regulated learning-informed intervention and to assess the impact of its implementation on students' intended use of SRL throughout medical school. METHODS: A two-part educational intervention focused on SRL skill development was carried out at Harvard Medical School during the start of the 2021 academic year. For the first component of the intervention, 169 first-year medical students engaged in an interactive class session structured around SRL concept videos, a brief lecture, small group discussions and individual reflection. Students completed pre- and post-intervention surveys which inquired about learners' current and anticipated application of SRL skills. During the second component of the intervention, 15 first-year medical students participated in a set of one-on-one academic SRL coaching sessions. All coaching participants completed follow-up semi-structured interviews. RESULTS: A statistically significant increase was observed between students' use of skills in all domains of self-regulated learning prior to the intervention and their anticipated use of these skills following the intervention. Prior to the intervention, 60.1% (n = 92) of students reported utilizing evidence-based learning strategies, compared to 92.8% (n = 142) of students (p < 0.001) who anticipated applying this SRL skills at the completion of the classroom session. Six core themes emerged from qualitative analysis of the post-intervention survey including learning plan development, accountability and progress tracking, goals for growth, engagement through active learning, routine reflection, and adapting to the curriculum. CONCLUSIONS: Both classroom-based learning sessions and one-on-one academic coaching programs are feasible approaches for encouraging the use of self-regulated learning techniques in the preclinical setting.


Assuntos
Tutoria , Estudantes de Medicina , Humanos , Faculdades de Medicina , Aprendizagem , Aprendizagem Baseada em Problemas
3.
Annu Rev Microbiol ; 69: 463-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26332089

RESUMO

Toxoplasmosis is the clinical and pathological consequence of acute infection with the obligate intracellular apicomplexan parasite Toxoplasma gondii. Symptoms result from tissue destruction that accompanies lytic parasite growth. This review updates current understanding of the host cell invasion, parasite replication, and eventual egress that constitute the lytic cycle, as well as the ways T. gondii manipulates host cells to ensure its survival. Since the publication of a previous iteration of this review 15 years ago, important advances have been made in our molecular understanding of parasite growth and mechanisms of host cell egress, and knowledge of the parasite's manipulation of the host has rapidly progressed. Here we cover molecular advances and current conceptual frameworks that include each of these topics, with an eye to what may be known 15 years from now.


Assuntos
Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/parasitologia , Animais , Interações Hospedeiro-Parasita , Humanos , Proteínas de Protozoários/metabolismo , Toxoplasma/citologia , Toxoplasmose/imunologia , Toxoplasmose/patologia , Vacúolos/parasitologia
4.
Semin Cell Dev Biol ; 40: 89-96, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25704308

RESUMO

Many cell types, including neurons, are known to release small membranous vesicles known as exosomes. In addition to their protein content these vesicles have recently been shown to contain messenger RNA (mRNA) and micro RNA (miRNA) species. Roles for these vesicles include cell-cell signalling, removal of unwanted proteins, and transfer of pathogens (including prion-like misfolded proteins) between cells, such as infectious prions. Prions are the infectious particles that are responsible for transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) of humans or bovine spongiform encephalopathy (BSE) of cattle. Exosomes are also involved in processing the amyloid precursor protein (APP), which is associated with Alzheimer's disease (AD). As exosomes can be isolated from circulating fluids such as serum, urine, and cerebrospinal fluid (CSF), they provide a potential source of biomarkers for neurological conditions. Here, we review the roles these vesicles play in neurodegenerative disease and highlight their potential in diagnosing these disorders through analysis of their RNA content.


Assuntos
Vesículas Extracelulares/metabolismo , Doenças Neurodegenerativas/patologia , Dobramento de Proteína , Animais , Vesículas Extracelulares/química , Humanos , MicroRNAs/análise , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Príons/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(9): 3620-5, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550511

RESUMO

Amyotrophic lateral sclerosis (ALS) is predominantly sporadic, but associated with heritable genetic mutations in 5-10% of cases, including those in Cu/Zn superoxide dismutase (SOD1). We previously showed that misfolding of SOD1 can be transmitted to endogenous human wild-type SOD1 (HuWtSOD1) in an intracellular compartment. Using NSC-34 motor neuron-like cells, we now demonstrate that misfolded mutant and HuWtSOD1 can traverse between cells via two nonexclusive mechanisms: protein aggregates released from dying cells and taken up by macropinocytosis, and exosomes secreted from living cells. Furthermore, once HuWtSOD1 propagation has been established, misfolding of HuWtSOD1 can be efficiently and repeatedly propagated between HEK293 cell cultures via conditioned media over multiple passages, and to cultured mouse primary spinal cord cells transgenically expressing HuWtSOD1, but not to cells derived from nontransgenic littermates. Conditioned media transmission of HuWtSOD1 misfolding in HEK293 cells is blocked by HuWtSOD1 siRNA knockdown, consistent with human SOD1 being a substrate for conversion, and attenuated by ultracentrifugation or incubation with SOD1 misfolding-specific antibodies, indicating a relatively massive transmission particle which possesses antibody-accessible SOD1. Finally, misfolded and protease-sensitive HuWtSOD1 comprises up to 4% of total SOD1 in spinal cords of patients with sporadic ALS (SALS). Propagation of HuWtSOD1 misfolding, and its subsequent cell-to-cell transmission, is thus a candidate process for the molecular pathogenesis of SALS, which may provide novel treatment and biomarker targets for this devastating disease.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Exossomos/metabolismo , Dobramento de Proteína , Superóxido Dismutase/química , Esclerose Lateral Amiotrófica/metabolismo , Animais , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Humanos , Camundongos , Microscopia Eletrônica , Pinocitose/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Superóxido Dismutase/metabolismo
6.
J Biol Chem ; 289(2): 789-802, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24280226

RESUMO

Conversion of prion protein (PrP(C)) into a pathological isoform (PrP(Sc)) during prion infection occurs in lipid rafts and is dependent on cholesterol. Here, we show that prion infection increases the abundance of cholesterol transporter, ATP-binding cassette transporter type A1 (ATP-binding cassette transporter type A1), but reduces cholesterol efflux from neuronal cells leading to the accumulation of cellular cholesterol. Increased abundance of ABCA1 in prion disease was confirmed in prion-infected mice. Mechanistically, conversion of PrP(C) to the pathological isoform led to PrP(Sc) accumulation in rafts, displacement of ABCA1 from rafts and the cell surface, and enhanced internalization of ABCA1. These effects were abolished with reversal of prion infection or by loading cells with cholesterol. Stimulation of ABCA1 expression with liver X receptor agonist or overexpression of heterologous ABCA1 reduced the conversion of prion protein into the pathological form upon infection. These findings demonstrate a reciprocal connection between prion infection and cellular cholesterol metabolism, which plays an important role in the pathogenesis of prion infection in neuronal cells.


Assuntos
Colesterol/metabolismo , Neurônios/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Células 3T3 , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Linhagem Celular Tumoral , Endossomos/metabolismo , Expressão Gênica/genética , Humanos , Hidrocarbonetos Fluorados/farmacologia , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Neurônios/patologia , Doenças Priônicas/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonamidas/farmacologia
7.
Glycobiology ; 25(7): 745-55, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25701659

RESUMO

Prion diseases are transmissible neurodegenerative disorders associated with the conversion of the cellular prion protein, PrP(C), to a misfolded isoform called PrP(Sc). Although PrP(Sc) is a necessary component of the infectious prion, additional factors, or cofactors, have been shown to contribute to the efficient formation of transmissible PrP(Sc). Glycosaminoglycans (GAGs) are attractive cofactor candidates as they can be found associated with PrP(Sc) deposits, have been shown to enhance PrP misfolding in vitro, are found in the same cellular compartments as PrP(C) and have been shown to be disease modifying in vivo. Here we investigated the effects of the sulfated GAGs, heparin and heparan sulfate (HS), on disease associated misfolding of full-length recombinant PrP. More specifically, the degree of sulfation of these molecules was investigated for its role in modulating the disease-associated characteristics of PrP. Both heparin and HS induced a ß-sheet conformation in recombinant PrP that was associated with the formation of aggregated species; however, the biochemical properties of the aggregates formed in the presence of heparin or HS varied in solubility and protease resistance. Furthermore, these properties could be modified by changes in GAG sulfation, indicating that subtle changes in the properties of prion disease cofactors could initiate disease associated misfolding.


Assuntos
Glicosaminoglicanos/metabolismo , Príons/metabolismo , Sulfatos/metabolismo , Microscopia Eletrônica de Transmissão , Estrutura Secundária de Proteína
8.
J Virol ; 88(5): 2690-703, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352465

RESUMO

UNLABELLED: Prion diseases are a group of fatal and incurable neurodegenerative diseases affecting both humans and animals. The principal mechanism of these diseases involves the misfolding the host-encoded cellular prion protein, PrP(C), into the disease-associated isoform, PrP(Sc). Familial forms of human prion disease include those associated with the mutations G114V and A117V, which lie in the hydrophobic domain of PrP. Here we have studied the murine homologues (G113V and A116V) of these mutations using cell-based and animal models of prion infection. Under normal circumstances, the mutant forms of PrP(C) share similar processing, cellular localization, and physicochemical properties with wild-type mouse PrP (MoPrP). However, upon exposure of susceptible cell lines expressing these mutants to infectious prions, very low levels of protease-resistant aggregated PrP(Sc) are formed. Subsequent mouse bioassay revealed high levels of infectivity present in these cells. Thus, these mutations appear to limit the formation of aggregated PrP(Sc), giving rise to the accumulation of a relatively soluble, protease sensitive, prion species that is highly neurotoxic. Given that these mutations lie next to the glycine-rich region of PrP that can abrogate prion infection, these findings provide further support for small, protease-sensitive prion species having a significant role in the progression of prion disease and that the hydrophobic domain is an important determinant of PrP conversion. IMPORTANCE: Prion diseases are transmissible neurodegenerative diseases associated with an infectious agent called a prion. Prions are comprised of an abnormally folded form of the prion protein (PrP) that is normally resistant to enzymes called proteases. In humans, prion disease can occur in individuals who inherited mutations in the prion protein gene. Here we have studied the effects of two of these mutations and show that they influence the properties of the prions that can be formed. We show that the mutants make highly infectious prions that are more sensitive to protease treatment. This study highlights a certain region of the prion protein as being involved in this effect and demonstrates that prions are not always resistant to protease treatment.


Assuntos
Mutação , Príons/genética , Príons/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Códon , Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Dados de Sequência Molecular , Peptídeo Hidrolases/metabolismo , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Príons/química , Proteólise , Alinhamento de Sequência
9.
Mol Cell Proteomics ; 12(8): 2148-59, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23645497

RESUMO

Epithelial-mesenchymal transition (EMT) is a highly conserved morphogenic process defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. EMT is associated with increased aggressiveness, invasiveness, and metastatic potential in carcinoma cells. To assess the contribution of extracellular vesicles following EMT, we conducted a proteomic analysis of exosomes released from Madin-Darby canine kidney (MDCK) cells, and MDCK cells transformed with oncogenic H-Ras (21D1 cells). Exosomes are 40-100 nm membranous vesicles originating from the inward budding of late endosomes and multivesicular bodies and are released from cells on fusion of multivesicular bodies with the plasma membrane. Exosomes from MDCK cells (MDCK-Exos) and 21D1 cells (21D1-Exos) were purified from cell culture media using density gradient centrifugation (OptiPrep™), and protein content identified by GeLC-MS/MS proteomic profiling. Both MDCK- and 21D1-Exos populations were morphologically similar by cryo-electron microscopy and contained stereotypical exosome marker proteins such as TSG101, Alix, and CD63. In this study we show that the expression levels of typical EMT hallmark proteins seen in whole cells correlate with those observed in MDCK- and 21D1-Exos, i.e. reduction of characteristic inhibitor of angiogenesis, thrombospondin-1, and epithelial markers E-cadherin, and EpCAM, with a concomitant up-regulation of mesenchymal makers such as vimentin. Further, we reveal that 21D1-Exos are enriched with several proteases (e.g. MMP-1, -14, -19, ADAM-10, and ADAMTS1), and integrins (e.g. ITGB1, ITGA3, and ITGA6) that have been recently implicated in regulating the tumor microenvironment to promote metastatic progression. A salient finding of this study was the unique presence of key transcriptional regulators (e.g. the master transcriptional regulator YBX1) and core splicing complex components (e.g. SF3B1, SF3B3, and SFRS1) in mesenchymal 21D1-Exos. Taken together, our findings reveal that exosomes from Ras-transformed MDCK cells are reprogrammed with factors which may be capable of inducing EMT in recipient cells.


Assuntos
Transição Epitelial-Mesenquimal , Exossomos/metabolismo , Proteínas ras/metabolismo , Animais , Anexinas/metabolismo , Transformação Celular Neoplásica/metabolismo , Cães , Genes ras , Integrinas/metabolismo , Células Madin Darby de Rim Canino , Peptídeo Hidrolases/metabolismo , Proteoma , Tetraspaninas/metabolismo
10.
BMC Genomics ; 15: 354, 2014 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-24885922

RESUMO

BACKGROUND: Next generation sequencing is helping to overcome limitations in organisms less accessible to classical or reverse genetic methods by facilitating whole genome mutational analysis studies. One traditionally intractable group, the Apicomplexa, contains several important pathogenic protozoan parasites, including the Plasmodium species that cause malaria.Here we apply whole genome analysis methods to the relatively accessible model apicomplexan, Toxoplasma gondii, to optimize forward genetic methods for chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) and ethylmethane sulfonate (EMS) at varying dosages. RESULTS: By comparing three different lab-strains we show that spontaneously generated mutations reflect genome composition, without nucleotide bias. However, the single nucleotide variations (SNVs) are not distributed randomly over the genome; most of these mutations reside either in non-coding sequence or are silent with respect to protein coding. This is in contrast to the random genomic distribution of mutations induced by chemical mutagenesis. Additionally, we report a genome wide transition vs transversion ratio (ti/tv) of 0.91 for spontaneous mutations in Toxoplasma, with a slightly higher rate of 1.20 and 1.06 for variants induced by ENU and EMS respectively. We also show that in the Toxoplasma system, surprisingly, both ENU and EMS have a proclivity for inducing mutations at A/T base pairs (78.6% and 69.6%, respectively). CONCLUSIONS: The number of SNVs between related laboratory strains is relatively low and managed by purifying selection away from changes to amino acid sequence. From an experimental mutagenesis point of view, both ENU (24.7%) and EMS (29.1%) are more likely to generate variation within exons than would naturally accumulate over time in culture (19.1%), demonstrating the utility of these approaches for yielding proportionally greater changes to the amino acid sequence. These results will not only direct the methods of future chemical mutagenesis in Toxoplasma, but also aid in designing forward genetic approaches in less accessible pathogenic protozoa as well.


Assuntos
Genoma , Toxoplasma/genética , Adenosina/genética , Adenosina/metabolismo , Sequência de Aminoácidos , Pareamento de Bases , Linhagem Celular , Metanossulfonato de Etila/toxicidade , Etilnitrosoureia/toxicidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Fenótipo , Mutação Puntual , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Timidina/genética , Timidina/metabolismo , Toxoplasma/efeitos dos fármacos
11.
Kidney Int ; 86(2): 433-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24352158

RESUMO

Micro RNAs (miRNAs) have been shown to circulate in biological fluids and are enclosed in vesicles such as exosomes; they are present in urine and represent a noninvasive methodology to detect biomarkers for diagnostic testing. The low abundance of RNA in urine creates difficulties in its isolation, of which exosomal miRNA is a small fraction, making downstream RNA assays challenging. Here, we investigate methods to maximize exosomal isolation and RNA yield for next-generation deep sequencing. Upon characterizing exosomal proteins and total RNA content in urine, several commercially available kits were tested for their RNA extraction efficiency. We subsequently used the methods with the highest miRNA content to profile baseline miRNA expression using next-generation deep sequencing. Comparisons of miRNA profiles were also made with exosomes isolated by differential ultracentrifugation methodology and a commercially available column-based protocol. Overall, miRNAs were found to be significantly enriched and intact in urine-derived exosomes compared with cell-free urine. The presence of other noncoding RNAs such as small nuclear and small nucleolar RNA in the exosomes, in addition to coding sequences related to kidney and bladder conditions, was also detected. Our study extensively characterizes the RNA content of exosomes isolated from urine, providing the potential to identify miRNA biomarkers in human urine.


Assuntos
Exossomos/química , Exossomos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , MicroRNAs/urina , Adulto , Biomarcadores/urina , Western Blotting , Exossomos/ultraestrutura , Feminino , Perfilação da Expressão Gênica/métodos , Marcadores Genéticos , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Ultracentrifugação , Urinálise/métodos , Adulto Jovem
12.
Nucleic Acids Res ; 40(21): 10937-49, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22965126

RESUMO

Prion diseases are transmissible neurodegenerative disorders affecting both humans and animals. The cellular prion protein, PrP(C), and the abnormal infectious form, PrP(Sc), are found associated with exosomes, which are small 50-130 nm vesicles released from cells. Exosomes also contain microRNAs (miRNAs), a class of non-coding RNA, and have been utilized to identify miRNA signatures for diagnosis of disease. While some miRNAs are deregulated in prion-infected brain tissue, the role of miRNA in circulating exosomes released during prion disease is unknown. Here, we investigated the miRNA profile in exosomes released from prion-infected neuronal cells. We performed the first small RNA deep sequencing study of exosomes and demonstrated that neuronal exosomes contain a diverse range of RNA species including retroviral RNA repeat regions, messenger RNA fragments, transfer RNA fragments, non-coding RNA, small nuclear RNA, small nucleolar RNA, small cytoplasmic RNA, silencing RNA as well as known and novel candidate miRNA. Significantly, we show that exosomes released by prion-infected neuronal cells have increased let-7b, let-7i, miR-128a, miR-21, miR-222, miR-29b, miR-342-3p and miR-424 levels with decreased miR-146 a levels compared to non-infected exosomes. Overall, these results demonstrate that circulating exosomes released during prion infection have a distinct miRNA signature that can be utilized for diagnosis and understanding pathogenic mechanisms in prion disease.


Assuntos
Exossomos/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Príons/fisiologia , Animais , Linhagem Celular , Sequenciamento de Nucleotídeos em Larga Escala , Hipotálamo/citologia , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/química , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo , Análise de Sequência de RNA , Transcriptoma
13.
FASEB J ; 26(10): 4160-73, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22767229

RESUMO

Exosomes are small membrane-bound vesicles released from cells and found in vivo in most biological fluids. Functions reported for exosomes include cell-cell communication, roles in modulating immune responses, and roles in the transfer of pathogens such as prions. Here we investigated the molecular characteristics of the structure of exosomes that harbor prion infectivity to determine the native structure of exosomes and whether infected exosomes have a distinct structure. Cryo-electron tomography revealed the previously unidentified ultrastructural detail of exosomes with high resolution. Exosomes were found to be naturally spherical in shape and to have a diverse population that varies in size and internal structure, such as differences in the number of membrane structures. Exosomes isolated from prion-infected cells contained a significantly different population of exosomes with distinct structural features compared to control vesicles from mock-infected cells. Exosomes are highly structured vesicles that can modify their structure on altering their protein cargo. This finding provides further insight into the role that the exosomal protein cargo plays on influencing the structure of the vesicles as well as highlighting the diversity of exosomes and their relationship to biological processes.


Assuntos
Exossomos/metabolismo , Príons/metabolismo , Animais , Linhagem Celular , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Exossomos/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Príons/ultraestrutura , Dobramento de Proteína , Coelhos
14.
Mol Microbiol ; 80(2): 378-90, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21320181

RESUMO

The Plasmodium RhopH complex is a high molecular weight antigenic complex consisting of three subunits - RhopH1/clag, RhopH2 and RhopH3 - located in the rhoptry secretory organelles of the invasive merozoite. In Plasmodium falciparum RhopH1/clag is encoded by one of five clag genes. Two highly similar paralogous genes, clag 3.1 and clag 3.2, are mutually exclusively expressed. Here we show clonal switching from the clag 3.2 to the clag 3.1 paralogue in vitro. Chromatin immunoprecitation studies suggest that silencing of either clag 3 paralogue is associated with the enrichment of specific histone modifications associated with heterochromatin. We were able to disrupt the clag 3.2 gene, with a drug cassette inserted into the clag 3.2 locus being readily silenced in a position-dependent and sequence-independent manner. Activation of this drug cassette by drug selection results in parasites with the clag 3.1 locus silenced and lack full-length clag 3.1 or 3.2 transcripts. These clag 3-null parasites demonstrate a significant growth inhibition compared with wild-type parasites, providing the first genetic evidence for a role for these proteins in efficient parasite proliferation. Epigenetic regulation of these chromosomally proximal members of a multigene family provides a mechanism for both immune evasion and functional diversification.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/genética , Proteínas de Protozoários/biossíntese , Imunoprecipitação da Cromatina , Técnicas de Inativação de Genes , Mutagênese Insercional , Proteínas de Protozoários/genética
15.
J Biol Chem ; 285(9): 6857-66, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20042598

RESUMO

Like their human hosts, Plasmodium falciparum parasites rely on the ubiquitin-proteasome system for survival. We previously identified PfUCHL3, a deubiquitinating enzyme, and here we characterize its activity and changes in active site architecture upon binding to ubiquitin. We find strong evidence that PfUCHL3 is essential to parasite survival. The crystal structures of both PfUCHL3 alone and in complex with the ubiquitin-based suicide substrate UbVME suggest a rather rigid active site crossover loop that likely plays a role in restricting the size of ubiquitin adduct substrates. Molecular dynamics simulations of the structures and a model of the PfUCHL3-PfNedd8 complex allowed the identification of shared key interactions of ubiquitin and PfNedd8 with PfUCHL3, explaining the dual specificity of this enzyme. Distinct differences observed in ubiquitin binding between PfUCHL3 and its human counterpart make it likely that the parasitic DUB can be selectively targeted while leaving the human enzyme unaffected.


Assuntos
Hidrolases/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Ubiquitina/química , Domínio Catalítico , Cristalografia por Raios X , Cisteína Endopeptidases , Humanos , Simulação de Dinâmica Molecular , Complexo de Endopeptidases do Proteassoma , Ligação Proteica , Ubiquitina Tiolesterase
16.
J Biol Chem ; 285(26): 20213-23, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20356832

RESUMO

Prion diseases are associated with the misfolding of the endogenously expressed prion protein (designated PrP(C)) into an abnormal isoform (PrP(Sc)) that has infectious properties. The hydrophobic domain of PrP(C) is highly conserved and contains a series of glycine residues that show perfect conservation among all species, strongly suggesting it has functional and evolutionary significance. These glycine residues appear to form repeats of the GXXXG protein-protein interaction motif (two glycines separated by any three residues); the retention of these residues is significant and presumably relates to the functionality of PrP(C). Mutagenesis studies demonstrate that minor alterations to this highly conserved region of PrP(C) drastically affect the ability of cells to uptake and replicate prion infection in both cell and animal bioassay. The localization and processing of mutant PrP(C) are not affected, although in vitro and in vivo studies demonstrate that this region is not essential for interaction with PrP(Sc), suggesting these residues provide conformational flexibility. These data suggest that this region of PrP(C) is critical in the misfolding process and could serve as a novel, species-independent target for prion disease therapeutics.


Assuntos
Motivos de Aminoácidos , Glicina/genética , Proteínas PrPC/genética , Proteínas PrPSc/genética , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Glicina/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Microdomínios da Membrana/metabolismo , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Ligação Proteica , Dobramento de Proteína , Homologia de Sequência de Aminoácidos , Transfecção
17.
J Biol Chem ; 285(43): 33054-33064, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20702404

RESUMO

Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P. falciparum, P. vivax, and P. berghei. The compounds were selective for the parasite enzymes over human DHODH, and x-ray structural data on the analog Genz-667348, demonstrated that species selectivity could be attributed to amino acid differences in the inhibitor-binding site. Compounds from this series demonstrated in vitro potency against the 3D7 and Dd2 strains of P. falciparum, good tolerability and oral exposure in the mouse, and ED(50) values in the 4-day murine P. berghei efficacy model of 13-21 mg/kg/day with oral twice-daily dosing. In particular, treatment with Genz-667348 at 100 mg/kg/day resulted in sterile cure. Two recent analogs of Genz-667348 are currently undergoing pilot toxicity testing to determine suitability as clinical development candidates.


Assuntos
Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Animais , Linhagem Celular , Di-Hidro-Orotato Desidrogenase , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Imidazóis/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Plasmodium berghei/enzimologia , Plasmodium vivax/enzimologia , Ratos
18.
Mol Microbiol ; 75(4): 990-1006, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20487292

RESUMO

The pathogenesis of Plasmodium falciparum depends on efficient invasion into host erythrocytes. Parasite ligands encoded by multi-gene families interact with erythrocyte receptors. P. falciparum reticulocyte binding protein homologues (PfRhs) are expressed at the apical surface of invasive merozoites and have divergent ectodomains that are postulated to bind different erythrocyte receptors. Variant expression of these paralogues results in the use of alternative invasion pathways. Two PfRh proteins, PfRh2a and PfRh2b, are identical for 2700 N-terminal amino acids and differ only in a C-terminal 500 amino acid region, which includes a unique ectodomain, transmembrane domain and cytoplasmic domain. Despite their similarity, PfRh2b is required for a well-defined invasion pathway while PfRh2a is not required or sufficient for this pathway. Mapping the genomic region encoding these proteins revealed a recombinogenic locus with PfRh2a and PfRh2b in a head-to-head orientation. We have generated viable PfRh2a/2b chimeric parasites to identify the regions required for alternative invasion pathway utilization. We find that the differential ability to use these pathways is conferred by the cytoplasmic domains of PfRh2a and PfRh2b, not the ectodomain or transmembrane regions. Our results highlight the importance of the cytoplasmic domain for functional diversification of a major adhesive ligand family in malaria parasites.


Assuntos
Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Animais , Eritrócitos/parasitologia , Ligantes , Malária/parasitologia , Merozoítos/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética
19.
Antimicrob Agents Chemother ; 55(6): 2612-22, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21422215

RESUMO

This study characterizes aminoindole molecules that are analogs of Genz-644442. Genz-644442 was identified as a hit in a screen of ~70,000 compounds in the Broad Institute's small-molecule library and the ICCB-L compound collection at Harvard Medical School. Genz-644442 is a potent inhibitor of Plasmodium falciparum in vitro (50% inhibitory concentrations [IC50s], 200 to 285 nM) and inhibits P. berghei in vivo with an efficacy of > 99% in an adapted version of Peters' 4-day suppressive test (W. Peters, Ann. Trop. Med. Parasitol. 69:155-171, 1975). Genz-644442 became the focus of medicinal chemistry optimization; 321 analogs were synthesized and were tested for in vitro potency against P. falciparum and for in vitro absorption, distribution, metabolism, and excretion (ADME) properties. This yielded compounds with IC50s of approximately 30 nM. The lead compound, Genz-668764, has been characterized in more detail. It is a single enantiomer with IC50s of 28 to 65 nM against P. falciparum in vitro. In the 4-day P. berghei model, when it was dosed at 100 mg/kg of body weight/day, no parasites were detected on day 4 postinfection. However, parasites recrudesced by day 9. Dosing at 200 mg/kg/day twice a day resulted in cures of 3/5 animals. The compound had comparable activity against P. falciparum blood stages in a human-engrafted NOD-scid mouse model. Genz-668764 had a terminal half-life of 2.8 h and plasma trough levels of 41 ng/ml when it was dosed twice a day orally at 55 mg/kg/day. Seven-day rat safety studies showed a no-observable-adverse-effect level (NOAEL) at 200 mg/kg/day; the compound was not mutagenic in Ames tests, did not inhibit the hERG channel, and did not have potent activity against a broad panel of receptors and enzymes. Employing allometric scaling and using in vitro ADME data, the predicted human minimum efficacious dose of Genz-668764 in a 3-day once-daily dosing regimen was 421 mg/day/70 kg, which would maintain plasma trough levels above the IC90 against P. falciparum for at least 96 h after the last dose. The predicted human therapeutic index was approximately 3, on the basis of the exposure in rats at the NOAEL. We were unable to select for parasites with >2-fold decreased sensitivity to the parent compound, Genz-644442, over 270 days of in vitro culture under drug pressure. These characteristics make Genz-668764 a good candidate for preclinical development.


Assuntos
Antimaláricos/farmacologia , Indóis/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/administração & dosagem , Antimaláricos/farmacocinética , Cães , Feminino , Humanos , Indóis/farmacocinética , Masculino , Camundongos , Plasmodium berghei/efeitos dos fármacos , Ratos
20.
Artigo em Inglês | MEDLINE | ID: mdl-34594468

RESUMO

While quantitative analytical skills have always been a part of modern biomedical training, the big data revolution and digital research environment have increased the importance of computational approaches for biomedical graduate education. To address this growing need, Ph.D. programs have explored ways to integrate quantitative training into their existing curricula. However, these attempts have been hindered by limitations on total instructional time, faculty perceptions, and scalability. Here, we describe a flipped approach that combined a preexisting online course with group problem solving sessions to effectively and efficiently teach biomedical Ph.D. students key concepts in the use of the Python programming language for research. Following the COVID-19 related shutdowns in March 2020, we successfully adapted this approach to an all-online version where the formerly in-person problem-solving sessions occurred in small groups over Zoom. We found that students in both in-person and remote flipped formats showed increased confidence using Python and related this to their thesis research. Following the shift to the fully remote format, the lack of a physically present instructor seemed to increase students' reliance on their classmates, which in turn promoted peer learning and support. This flexible, scalable approach to computational training may address the needs of many biomedical Ph.D. programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA