Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(4): 1938-1946, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38232376

RESUMO

The production of ceramics from uranium coordination compounds can be achieved through thermal processing if an excess amount of the desired atoms (i.e., C or N), or reactive gaseous products (e.g., methane or nitrogen oxide) is made available to the reactive uranium metal core via decomposition/fragmentation of the surrounding ligand groups. Here, computational thermodynamic approaches were utilized to identify the temperatures necessary to produce uranium metal from some starting compounds─UI4(TMEDA)2, UCl4(TMEDA)2, UCl3(pyridine)x, and UI3(pyridine)4. Experimentally, precursors were irradiated by a laser under various gaseous environments (argon, nitrogen, and methane) creating extreme reaction conditions (i.e., fast heating, high temperature profile >2000 °C, and rapid cooling). Despite the fast dynamics associated with laser irradiation, the central uranium atom reacted with the thermal decomposition products of the ligands yielding uranium ceramics. Residual gas analysis identified vaporized products from the laser irradiation, and the final ceramic products were characterized by powder X-ray diffraction. The composition of the uranium precursor as well as the gaseous environment had a direct impact on the production of the final phases.

2.
Inorg Chem ; 62(16): 6242-6254, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36580490

RESUMO

Deciphering the solution chemistry and speciation of actinides is inherently difficult due to radioactivity, rarity, and cost constraints, especially for transplutonium elements. In this context, the development of new chelating platforms for actinides and associated spectroscopic techniques is particularly important. In this study, we investigate a relatively overlooked class of chelators for actinide binding, namely, polyoxometalates (POMs). We provide the first NMR measurements on americium-POM and curium-POM complexes, using one-dimensional (1D) 31P NMR, variable-temperature NMR, and spin-lattice relaxation time (T1) experiments. The proposed POM-NMR approach allows for the study of trivalent f-elements even when only microgram amounts are available and in phosphate-containing solutions where f-elements are typically insoluble. The solution-state speciation of trivalent americium, curium, plus multiple lanthanide ions (La3+, Nd3+, Sm3+, Eu3+, Yb3+, and Lu3+), in the presence of the model POM ligand PW11O397- was elucidated and revealed the concurrent formation of two stable complexes, [MIII(PW11O39)(H2O)x]4- and [MIII(PW11O39)2]11-. Interconversion reaction constants, reaction enthalpies, and reaction entropies were derived from the NMR data. The NMR results also provide experimental evidence of the weakly paramagnetic nature of the Am3+ and Cm3+ ions in solution. Furthermore, the study reveals a previously unnoticed periodicity break along the f-element series with the reversal of T1 relaxation times of the 1:1 and 1:2 complexes and the preferential formation of the long T1 species for the early lanthanides versus the short T1 species for the late lanthanides, americium, and curium. Given the broad variety of POM ligands that exist, with many of them containing NMR-active nuclei, the combined POM-NMR approach reported here opens a new avenue to investigate difficult-to-study elements such as heavy actinides and other radionuclides.

3.
Inorg Chem ; 56(16): 9602-9608, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28783329

RESUMO

Understanding the stability fields and decomposition products of various metal- and actinide-oxide nanoclusters is essential for their development into useful materials for industrial processes. Herein, we explore the spontaneous transformation of the sulfate-centered, phosphate functionalized uranyl peroxide nanocluster {U20P6} to {U24} under aqueous ambient conditions using time-resolved small-angle X-ray scattering, Raman, and 31P NMR spectroscopy. We show that the unusual µ-η1:η2 bridging mode of peroxide between uranyl ions observed in {U20P6} may lead to its rapid breakdown in solution as evidenced by liberation of phosphate groups that were originally present as an integral part of its cage structure. Remarkably, the uranyl peroxide moieties present after degradation of {U20P6} undergo cation-mediated reassembly into the {U24} cluster, demonstrating the propensity of the uranyl peroxide systems to preserve well-defined macro-anions.

4.
Inorg Chem ; 56(9): 5478-5487, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28394584

RESUMO

Herein, we report a new salt of a pyrophosphate-functionalized uranyl peroxide nanocluster {U24Pp12} (1) exhibiting Oh molecular symmetry both in the solid and solution. Study of the system yielding 1 across a wide range of pH by single-crystal X-ray diffraction, small-angle X-ray scattering, and a combination of traditional 31P and diffusion-ordered spectroscopy (DOSY) NMR affords unprecedented insight into the amphoteric chemistry of this uranyl peroxide system. Key results include formation of a rare binary {U24}·{U24Pp12} (3) system observed under alkaline conditions, and evidence of acid-promoted decomposition of {U24Pp12} (1) followed by spatial rearrangement and condensation of {U4} building blocks into the {U32Pp16} (2) cluster. Furthermore, 31P DOSY NMR measurements performed on saturated solutions containing crystalline {U32Pp16} show only trace amounts (∼2% relative abundance) of the intact form of this cluster, suggesting a complex interconversion of {U24Pp12}, {U32Pp16}, and {U4Pp4-x} ions.

5.
Angew Chem Int Ed Engl ; 56(34): 10161-10164, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28508441

RESUMO

Multimeric oxo-hydroxo Al clusters function as models for common mineral structures and reactions. Cluster research, however, is often slowed by a lack of methods to prepare clusters in pure form and in large amounts. Herein, we report a facile synthesis of the little known cluster Al8 (OH)14 (H2 O)18 (SO4 )5 (Al8 ) through a simple dissolution method. We confirm its structure by single-crystal X-ray diffraction and show by 27 Al NMR spectroscopy, electrospray-ionization mass spectrometry, and small- and wide-angle X-ray scattering that it also exists in solution. We speculate that Al8 may form in natural water systems through the dissolution of aluminum-containing minerals in acidic sulfate solutions, such as those that could result from acid rain or mine drainage. Additionally, the dissolution method produces a discrete Al cluster on a scale suitable for studies and applications in materials science.

6.
Chemistry ; 22(52): 18682-18685, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27785845

RESUMO

The solution chemistry of aluminum has long interested scientists due to its relevance to materials chemistry and geochemistry. The dynamic behavior of large aluminum-oxo-hydroxo clusters, specifically [Al13 O4 (OH)24 (H2 O)12 ]7+ (Al13 ), is the focus of this paper. 27 Al NMR, 1 H NMR, and 1 H DOSY techniques were used to follow the isomerization of the ϵ-Al13 in the presence of glycine and Ca2+ at 90 °C. Although the conversion of ϵ-Al13 to new clusters and/or Baker-Figgis-Keggin isomers has been studied previously, new 1 H NMR and 1 H DOSY analyses provided information about the role of glycine, the ligated intermediates, and the mechanism of isomerization. New 1 H NMR data suggest that glycine plays a critical role in the isomerization. Surprisingly, glycine does not bind to Al30 clusters, which were previously proposed as an intermediate in the isomerization. Additionally, a highly symmetric tetrahedral signal (δ=72 ppm) appeared during the isomerization process, which evidence suggests corresponds to the long-sought α-Al13 isomer in solution.

7.
Inorg Chem ; 55(7): 3541-6, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26974702

RESUMO

Recent accidents resulting in worker injury and radioactive contamination occurred due to pressurization of uranium yellowcake drums produced in the western U.S.A. The drums contained an X-ray amorphous reactive form of uranium oxide that may have contributed to the pressurization. Heating hydrated uranyl peroxides produced during in situ mining can produce an amorphous compound, as shown by X-ray powder diffraction of material from impacted drums. Subsequently, studtite, [(UO2)(O2)(H2O)2](H2O)2, was heated in the laboratory. Its thermal decomposition produced a hygroscopic anhydrous uranyl peroxide that reacts with water to release O2 gas and form metaschoepite, a uranyl-oxide hydrate. Quantum chemical calculations indicate that the most stable U2O7 conformer consists of two bent (UO2)(2+) uranyl ions bridged by a peroxide group bidentate and parallel to each uranyl ion, and a µ2-O atom, resulting in charge neutrality. A pair distribution function from neutron total scattering supports this structural model, as do (1)H- and (17)O-nuclear magnetic resonance spectra. The reactivity of U2O7 in water and with water in air is higher than that of other uranium oxides, and this can be both hazardous and potentially advantageous in the nuclear fuel cycle.

8.
Angew Chem Int Ed Engl ; 54(51): 15444-7, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26404025

RESUMO

Nuclear spin relaxation rates of (2) H and (139) La in LaCl3 +(2) H2 O and La(ClO4 )3 +(2) H2 O solutions were determined as a function of pressure in order to demonstrate a new NMR probe designed for solution spectroscopy at geochemical pressures. The (2) H longitudinal relaxation rates (T1 ) vary linearly to 1.6 GPa, consistent with previous work at lower pressures. The (139) La T1 values vary both with solution chemistry and pressure, but converge with pressure, suggesting that the combined effects of increased viscosity and enhanced rates of ligand exchange control relaxation. This simple NMR probe design allows experiments on aqueous solutions to pressures corresponding roughly to those at the base of the Earth's continental crust.

9.
Angew Chem Int Ed Engl ; 53(37): 9788-91, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-24989120

RESUMO

A non-magnetic piston-cylinder pressure cell is presented for solution-state NMR spectroscopy at geochemical pressures. The probe has been calibrated up to 20 kbar using in situ ruby fluorescence and allows for the measurement of pressure dependencies of a wide variety of NMR-active nuclei with as little as 10 µL of sample in a microcoil. Initial (11)B NMR spectroscopy of the H3BO3-catechol equilibria reveals a large pressure-driven exchange rate and a negative pressure-dependent activation volume, reflecting increased solvation and electrostriction upon boron-catecholate formation. The inexpensive probe design doubles the current pressure range available for solution NMR spectroscopy and is particularly important to advance the field of aqueous geochemistry.

10.
Nat Chem ; 14(12): 1357-1366, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36050378

RESUMO

The synthesis and study of radioactive compounds are both inherently limited by their toxicity, cost and isotope scarcity. Traditional methods using small inorganic or organic complexes typically require milligrams of sample-per attempt-which for some isotopes is equivalent to the world's annual supply. Here we demonstrate that polyoxometalates (POMs) enable the facile formation, crystallization, handling and detailed characterization of metal-ligand complexes from microgram quantities owing to their high molecular weight and controllable solubility properties. Three curium-POM complexes were prepared, using just 1-10 µg per synthesis of the rare isotope 248Cm3+, and characterized by single-crystal X-ray diffraction, showing an eight-coordinated Cm3+ centre. Moreover, spectrophotometric, fluorescence, NMR and Raman analyses of several f-block element-POM complexes, including 243Am3+ and 248Cm3+, showed otherwise unnoticeable differences between their solution versus solid-state chemistry, and actinide versus lanthanide behaviour. This POM-driven strategy represents a viable path to isolate even rarer complexes, notably with actinium or transcalifornium elements.


Assuntos
Complexos de Coordenação , Ligantes , Ânions , Cristalografia por Raios X , Isótopos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA