Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurocomputing (Amst) ; 275: 330-340, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29398782

RESUMO

Class imbalance presents a major hurdle in the application of classification methods. A commonly taken approach is to learn ensembles of classifiers using rebalanced data. Examples include bootstrap averaging (bagging) combined with either undersampling or oversampling of the minority class examples. However, rebalancing methods entail asymmetric changes to the examples of different classes, which in turn can introduce their own biases. Furthermore, these methods often require specifying the performance measure of interest a priori, i.e., before learning. An alternative is to employ the threshold moving technique, which applies a threshold to the continuous output of a model, offering the possibility to adapt to a performance measure a posteriori, i.e., a plug-in method. Surprisingly, little attention has been paid to this combination of a bagging ensemble and threshold-moving. In this paper, we study this combination and demonstrate its competitiveness. Contrary to the other resampling methods, we preserve the natural class distribution of the data resulting in well-calibrated posterior probabilities. Additionally, we extend the proposed method to handle multiclass data. We validated our method on binary and multiclass benchmark data sets by using both, decision trees and neural networks as base classifiers. We perform analyses that provide insights into the proposed method.

2.
Cogn Sci ; 45(1): e12922, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33432630

RESUMO

One of the main limitations of natural language-based approaches to meaning is that they do not incorporate multimodal representations the way humans do. In this study, we evaluate how well different kinds of models account for people's representations of both concrete and abstract concepts. The models we compare include unimodal distributional linguistic models as well as multimodal models which combine linguistic with perceptual or affective information. There are two types of linguistic models: those based on text corpora and those derived from word association data. We present two new studies and a reanalysis of a series of previous studies. The studies demonstrate that both visual and affective multimodal models better capture behavior that reflects human representations than unimodal linguistic models. The size of the multimodal advantage depends on the nature of semantic representations involved, and it is especially pronounced for basic-level concepts that belong to the same superordinate category. Additional visual and affective features improve the accuracy of linguistic models based on text corpora more than those based on word associations; this suggests systematic qualitative differences between what information is encoded in natural language versus what information is reflected in word associations. Altogether, our work presents new evidence that multimodal information is important for capturing both abstract and concrete words and that fully representing word meaning requires more than purely linguistic information. Implications for both embodied and distributional views of semantic representation are discussed.


Assuntos
Linguística , Semântica , Formação de Conceito , Humanos , Atenção Plena
3.
Front Psychol ; 6: 818, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26136709

RESUMO

The connection between brain and mind is an important scientific and philosophical question that we are still far from completely understanding. A crucial point to our work is noticing that thermodynamics provides a convenient framework to model brain activity, whereas cognition can be modeled in information-theoretical terms. In fact, several models have been proposed so far from both approaches. A second critical remark is the existence of deep theoretical connections between thermodynamics and information theory. In fact, some well-known authors claim that the laws of thermodynamics are nothing but principles in information theory. Unlike in physics or chemistry, a formalization of the relationship between information and energy is currently lacking in neuroscience. In this paper we propose a framework to connect physical brain and cognitive models by means of the theoretical connections between information theory and thermodynamics. Ultimately, this article aims at providing further insight on the formal relationship between cognition and neural activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA