Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nucleic Acids Res ; 47(8): 3937-3956, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30820548

RESUMO

RNA polymerase (pol) III occurs in two forms, containing either the POLR3G subunit or the related paralogue POLR3GL. Whereas POLR3GL is ubiquitous, POLR3G is enriched in undifferentiated cells. Depletion of POLR3G selectively triggers proliferative arrest and differentiation of prostate cancer cells, responses not elicited when POLR3GL is depleted. A small molecule pol III inhibitor can cause POLR3G depletion, induce similar differentiation and suppress proliferation and viability of cancer cells. This response involves control of the fate-determining factor NANOG by small RNAs derived from Alu short interspersed nuclear elements. Tumour initiating activity in vivo can be reduced by transient exposure to the pol III inhibitor. Untransformed prostate cells appear less sensitive than cancer cells to pol III depletion or inhibition, raising the possibility of a therapeutic window.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , RNA Polimerase III/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Idoso , Elementos Alu/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Polimerase III/antagonistas & inibidores , RNA Polimerase III/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Br J Cancer ; 119(9): 1133-1143, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30318509

RESUMO

BACKGROUND: Human prostate cancers display numerous DNA methylation changes compared to normal tissue samples. However, definitive identification of features related to the cells' malignant status has been compromised by the predominance of cells with luminal features in prostate cancers. METHODS: We generated genome-wide DNA methylation profiles of cell subpopulations with basal or luminal features isolated from matched prostate cancer and normal tissue samples. RESULTS: Many frequent DNA methylation changes previously attributed to prostate cancers are here identified as differences between luminal and basal cells in both normal and cancer samples. We also identified changes unique to each of the two cancer subpopulations. Those specific to cancer luminal cells were associated with regulation of metabolic processes, cell proliferation and epithelial development. Within the prostate cancer TCGA dataset, these changes were able to distinguish not only cancers from normal samples, but also organ-confined cancers from those with extraprostatic extensions. Using changes present in both basal and luminal cancer cells, we derived a new 17-CpG prostate cancer signature with high predictive power in the TCGA dataset. CONCLUSIONS: This study demonstrates the importance of comparing phenotypically matched prostate cell populations from normal and cancer tissues to unmask biologically and clinically relevant DNA methylation changes.


Assuntos
Metilação de DNA , Fenótipo , Neoplasias da Próstata/genética , Ilhas de CpG , Humanos , Masculino
3.
Br J Cancer ; 113(4): 611-5, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26203762

RESUMO

BACKGROUND: Objective identification of key miRNAs from transcriptomic data is difficult owing to the inherent inconsistencies within miRNA target-prediction algorithms and the promiscuous nature of miRNA-mRNA target relationship. METHODS: An integrated database of miRNAs and their 'relevant' mRNA targets was generated from validated miRNA and mRNA microarray data sets generated from patient-derived prostate epithelial normal and cancer stem-like cells (SCs) and committed basal (CB) cells. The effect of miR-542-5p inhibition was studied to provide proof-of-principle for database utility. RESULTS: Integration of miRNA-mRNA databases showed that signalling pathways and processes can be regulated by a single or relatively few miRNAs, for example, DNA repair/Notch pathway by miR-542-5p, P=0.008. Inhibition of miR-542-5p in CB cells (thereby achieving miR-542-5p expression levels similar to SCs) promoted efficient DNA repair and activated expression of Notch reporters, HES1 and Survivin, without inducing dedifferentiation into SCs. CONCLUSIONS: Our novel framework impartially identifies therapeutically relevant miRNA candidates from transcriptomic data sets.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/patologia , MicroRNAs/genética , Próstata/metabolismo , Próstata/patologia , RNA Mensageiro/genética , Reparo do DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores Notch/genética , Transdução de Sinais/genética
4.
Stem Cells ; 30(6): 1087-96, 2012 06.
Artigo em Inglês | MEDLINE | ID: mdl-22593016

RESUMO

Normal prostatic epithelium is composed of basal and luminal cells. Prostate cancer can be initiated in both benign basal and luminal stem cells, but because basal cell markers are not expressed in patient tumors, the former result was unexpected. Since the cells of origin of prostate cancer are important therapeutic targets, we sought to provide further proof that basal stem cells have tumorigenic potential. Prostatic basal cells were enriched based on α2ß1integrin(hi) expression and further enriched for stem cells using CD133 in nontumorigenic BPH-1 cells. Human embryonic stem cells (hESCs) were also used as a source of normal stem cells. To test their tumorigenicity, we used two alternate stromal-based approaches; (a) recombination with human cancer-associated fibroblasts (CAFs) or (b) recombination with embryonic stroma (urogenital mesenchyme) and treated host mice with testosterone and 17ß-estradiol. Enriched α2ß1integrin(hi) basal cells from BPH-1 cells resulted in malignant tumor formation using both assays of tumorigenicity. Surprisingly, the tumorigenic potential did not reside in the CD133(+) stem cells but was consistently observed in the CD133(-) population. CAFs also failed to induce prostatic tumors from hESCs. These data confirmed that benign human basal cells include cells of origin of prostate cancer and reinforced their importance as therapeutic targets. In addition, our data suggested that the more proliferative CD133(-) basal cells are more susceptible to tumorigenesis compared to the CD133(+)-enriched stem cells. These findings challenge the current dogma that normal stem cells and cells of origin of cancer are the same cell type(s).


Assuntos
Antígenos CD/metabolismo , Glicoproteínas/metabolismo , Peptídeos/metabolismo , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Antígeno AC133 , Animais , Diferenciação Celular/fisiologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos SCID , Neoplasias da Próstata/metabolismo
5.
Adv Exp Med Biol ; 777: 167-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23161082

RESUMO

The origin and phenotype of stem cells in human prostate cancer remains a subject of much conjecture. In this scenario, CD133 has been successfully used as a stem cell marker in both normal prostate and prostate cancer. However, cancer stem cells have been identified without the use of this marker, opening up the possibility of a CD133 negative cancer stem cell. In this chapter, we review the current literature regarding prostate cancer stem cells, with specific reference to the expression of CD133 as a stem cell marker to identify and purify stem cells in normal prostate epithelium and prostate cancer.


Assuntos
Células-Tronco Neoplásicas , Neoplasias da Próstata , Biomarcadores/metabolismo , Humanos , Masculino , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/metabolismo
6.
Mol Cancer ; 10: 94, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21801380

RESUMO

BACKGROUND: Epigenetic control is essential for maintenance of tissue hierarchy and correct differentiation. In cancer, this hierarchical structure is altered and epigenetic control deregulated, but the relationship between these two phenomena is still unclear. CD133 is a marker for adult stem cells in various tissues and tumour types. Stem cell specificity is maintained by tight regulation of CD133 expression at both transcriptional and post-translational levels. In this study we investigated the role of epigenetic regulation of CD133 in epithelial differentiation and cancer. METHODS: DNA methylation analysis of the CD133 promoter was done by pyrosequencing and methylation specific PCR; qRT-PCR was used to measure CD133 expression and chromatin structure was determined by ChIP. Cells were treated with DNA demethylating agents and HDAC inhibitors. All the experiments were carried out in both cell lines and primary samples. RESULTS: We found that CD133 expression is repressed by DNA methylation in the majority of prostate epithelial cell lines examined, where the promoter is heavily CpG hypermethylated, whereas in primary prostate cancer and benign prostatic hyperplasia, low levels of DNA methylation, accompanied by low levels of mRNA, were found. Moreover, differential methylation of CD133 was absent from both benign or malignant CD133+/α2ß1integrinhi prostate (stem) cells, when compared to CD133-/α2ß1integrinhi (transit amplifying) cells or CD133-/α2ß1integrinlow (basal committed) cells, selected from primary epithelial cultures. Condensed chromatin was associated with CD133 downregulation in all of the cell lines, and treatment with HDAC inhibitors resulted in CD133 re-expression in both cell lines and primary samples. CONCLUSIONS: CD133 is tightly regulated by DNA methylation only in cell lines, where promoter methylation and gene expression inversely correlate. This highlights the crucial choice of cell model systems when studying epigenetic control in cancer biology and stem cell biology. Significantly, in both benign and malignant prostate primary tissues, regulation of CD133 is independent of DNA methylation, but is under the dynamic control of chromatin condensation. This indicates that CD133 expression is not altered in prostate cancer and it is consistent with an important role for CD133 in the maintenance of the hierarchical cell differentiation patterns in cancer.


Assuntos
Células-Tronco Adultas/metabolismo , Antígenos CD/genética , Diferenciação Celular/genética , Células Epiteliais/fisiologia , Glicoproteínas/genética , Neoplasias/genética , Peptídeos/genética , Regiões Promotoras Genéticas , Antígeno AC133 , Células-Tronco Adultas/fisiologia , Animais , Antígenos CD/metabolismo , Biomarcadores/análise , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Metilação de DNA/fisiologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Neoplasias/metabolismo , Neoplasias/patologia , Peptídeos/metabolismo , Hiperplasia Prostática/genética , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transplante Heterólogo
7.
Prostate ; 71(15): 1646-55, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21432868

RESUMO

BACKGROUND: Prostate development and maintenance in the adult results from an interaction of stromal and glandular components. Androgens can drive this process by direct action on the stroma. We investigated whether there was a direct link between androgens and another key regulator of stromal cells, intracellular Ca2+ ([Ca2+ ]i ). METHODS: Prostate stromal cells were freshly obtained and cultures derived from patients with benign prostatic hyperplasia. Gene expression in dihydrotestosterone treated and untreated cells was compared using Affymetrix gene expression arrays and Ca2+ regulated features were identified by Gene Ontology (GO). Changes in [Ca2+]i were determined in Fluo-4 loaded cells. Androgen regulation was confirmed by chromatin immunoprecipitaion. RESULTS: Stromal cell cultures were sorted for expression of integrin α1 ß1 , which enriched for cells expressing the androgen receptor (AR). We identified key functional categories, within the androgen-induced gene expression signature, focusing on genes involved in calcium signaling. From this analysis, stromal interaction molecule-1 (STIM1) was identified as a significantly differentially expressed gene with four relevant associated GO terms. DNA sequence analysis showed that the promoter region of STIM1 contained putative androgen response element sequences in which AR binding ability of STIM1 was confirmed. Androgens directly regulated STIM1 expression and STIM1 effects on store-operated calcium entry were inhibited by STIM1 knock-down. Reduced STIM1 expression in prostate stromal cells led to a reduction in basal Ca2+ levels, the amount of Ca2+ released by thapsigargin and a reduction in store filling following TG-induced store depletion. CONCLUSIONS: These results indicate that androgens modulate [Ca2+]i through the direct regulation of the STIM1 gene by AR binding to the STIM1 promoter.


Assuntos
Sinalização do Cálcio/fisiologia , Di-Hidrotestosterona/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Próstata/metabolismo , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Próstata/citologia , Próstata/efeitos dos fármacos , RNA/química , RNA/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Receptores Androgênicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Molécula 1 de Interação Estromal
8.
Exp Cell Res ; 316(19): 3161-71, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20727882

RESUMO

To investigate hierarchy in human prostate epithelial cells, we generated recombinant lentiviruses, infected primary cultures and cell lines, and followed their fate in vitro. The lentiviruses combined constitutive promoters including CMV and ß-actin, or late-stage differentiation promoters including PSCA (prostate stem cell antigen) and PSAPb (prostate specific antigen/probasin) driving expression of monomeric, dimeric and tetrameric fluorescent proteins. Significantly, rare CD133(+) cells from primary prostate epithelial cultures were successfully infected and activation of late-stage promoters was observed in basal epithelial cultures following induction of differentiation. Lentiviruses also infected CD133(+) cells within the P4E6 cell line. However, promoter silencing was observed in several cell lines (P4E6, BPH-1, PC3). We examined the promoter methylation status of the lentiviral insertions in heterogeneously fluorescent cultures from PC3 clones and found that DNA methylation was not the primary mechanism of silencing of the CMV promoter. We also describe limitations to the lentivirus system including technical challenges due to low titers and low infection efficiency in primary cultures. However, we have identified a functional late-stage promoter that indicates differentiation from a basal to a luminal phenotype and demonstrate that this strategy for lineage tracking of prostate epithelial cells is valid with further optimisation.


Assuntos
Diferenciação Celular , Células Epiteliais/citologia , Técnicas Genéticas , Vetores Genéticos/genética , Lentivirus/genética , Próstata/citologia , Antígeno AC133 , Antígenos CD/metabolismo , Linhagem Celular Tumoral , Células Clonais , Células Epiteliais/virologia , Fluorescência , Inativação Gênica , Genes Reporter , Glicoproteínas/metabolismo , Humanos , Infecções por Lentivirus/virologia , Masculino , Peptídeos/metabolismo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , Antígeno Prostático Específico/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/virologia , Análise de Sequência de DNA
9.
Sci Rep ; 9(1): 5120, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914656

RESUMO

Loss of latexin (LXN) expression negatively correlates with the prognosis of several human cancers. Despite association with numerous processes including haematopoietic stem cell (HSC) fate, inflammation and tumour suppression, a clearly defined biological role for LXN is still lacking. Therefore, we sought to understand LXN expression and function in the normal and malignant prostate to assess its potential as a therapeutic target. Our data demonstrate that LXN is highly expressed in normal prostate luminal cells but downregulated in high Gleason grade cancers. LXN protein is both cytosolic and secreted by prostate cells and expression is directly and potently upregulated by all-trans retinoic acid (atRA). Whilst overexpression of LXN in prostate epithelial basal cells did not affect cell fate, LXN overexpression in the luminal cancer line LNCaP reduced plating efficiency. Transcriptome analysis revealed that LXN overexpression had no direct effects on gene expression but had significant indirect effects on important genes involved in both retinoid metabolism and IFN-associated inflammatory responses. These data highlight a potential role for LXN in retinoid signaling and inflammatory pathways. Investigating the effects of LXN on immune cell function in the tumour microenvironment (TME) may reveal how observed intratumoural loss of LXN affects the prognosis of many adenocarcinomas.


Assuntos
Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Proteínas do Tecido Nervoso/biossíntese , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Células PC-3 , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Supressoras de Tumor/genética
10.
J Cell Biochem ; 105(4): 931-9, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18655194

RESUMO

Inflammation has been implicated for some time as a potential aetiological agent in human prostate cancer. Viral and bacterial infections or even chemical carcinogens such as those found in cooked meat have been proposed as the inflammatory stimuli, but the mechanism of cancer induction is unknown. Recent information about gene expression patterns in normal and malignant epithelial stem cells from human prostate provides a new hypothesis for inflammation-induced carcinogenesis. The hypothesis states that in the stem cells located in the basal cell compartment of the prostate, activated prostate epithelial stem cells acquire a survival advantage, by expressing one of more of the same cytokines such as IL6. The establishment of one or more autocrine signalling loops results in an expansion of these cells in the absence of inflammation, as a potential first stage in the development of the tumour.


Assuntos
Inflamação/complicações , Neoplasias da Próstata/etiologia , Comunicação Autócrina , Sobrevivência Celular , Citocinas/genética , Células Epiteliais/patologia , Humanos , Masculino , Neoplasias da Próstata/patologia , Células-Tronco/patologia
11.
Mol Cell Endocrinol ; 288(1-2): 30-7, 2008 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-18403105

RESUMO

The prostate gland is the most common site for cancer in males within the developed world. Androgens play a vital role in prostate development, maintenance of tissue function and pathogenesis of prostate disease. The androgen receptor signalling pathway facilitates that role in both the epithelial compartment and in the underlying stroma. Stroma is a key mediator of androgenic effects upon the epithelium and can regulate both the fate of the epithelial stem cell and potentially the initiation and progression of prostate cancer. Different groups of growth factors are expressed by stroma, which control proliferation, and differentiation of prostate epithelium demonstrating a critical role for stroma in epithelial growth and homeostasis. Paracrine stromal proteins may offer the possibility to control tumour stem cell growth and could permit prostate specific targeting of both therapies and of androgen responsive proteins. The effect of 5alpha-dihydrotestosterone, the more potent metabolite of testosterone, on expression of androgen-regulated genes in stroma from benign prostatic hyperplasia is a key mediator of epithelial cell fate. Global gene expression arrays have recently identified new candidate genes in androgen responsive stroma, some of which have androgen receptor binding sites in their promoter regions. Some of these genes have direct androgen receptor binding ability.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Próstata/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Animais , Humanos , Masculino , Mutação/genética
12.
Methods Mol Biol ; 1786: 55-66, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29786786

RESUMO

This chapter focuses on primary cultures of the human malignant prostate. Current abilities to isolate and culture stem cells, transit-amplifying cells, and secretory luminal cells are described. Advantages and limitations of this model system are also discussed.


Assuntos
Técnicas de Cultura de Células , Neoplasias da Próstata/patologia , Biópsia , Células Epiteliais/metabolismo , Células Alimentadoras , Humanos , Masculino , Esferoides Celulares , Células Estromais/metabolismo , Células Tumorais Cultivadas
13.
PeerJ ; 6: e5981, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498642

RESUMO

Patient-derived xenograft (PDX) models are increasingly being used in oncology drug development because they offer greater predictive value than traditional cell line models. Using novel tools to critique model validity and reliability we performed a systematic review to identify all original publications describing the derivation of PDX models of colon, prostate, breast and lung cancer. Validity was defined as the ability to recapitulate the disease of interest. The study protocol was registered with the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES). Searches were performed in Embase, MEDLINE and Pubmed up to July 2017. A narrative data synthesis was performed. We identified 105 studies of model validations; 29 for breast, 29 for colon, 25 for lung, 23 for prostate and 4 for multiple tissues. 133 studies were excluded because they did not perform any validation experiments despite deriving a PDX. Only one study reported following the ARRIVE guidelines; developed to improve the standard of reporting for animal experimentation. Remarkably, half of all breast (52%) and prostate (50%) studies were judged to have high concern, in contrast to 16% of colon and 28% of lung studies. The validation criteria that most commonly failed (evidence to the contrary) were: tissue of origin not proven and histology of the xenograft not comparable to the parental tumour. Overall, most studies were categorized as unclear because one or more validation conditions were not reported, or researchers failed to provide data for a proportion of their models. For example, failure to demonstrate tissue of origin, response to standard of care agents and to exclude development of lymphoma. Validation tools have the potential to improve reproducibility, reduce waste in research and increase the success of translational studies.

14.
Cancer Res ; 65(23): 10946-51, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16322242

RESUMO

Existing therapies for prostate cancer eradicates the bulk of cells within a tumor. However, most patients go on to develop androgen-independent disease that remains incurable by current treatment strategies. There is now increasing evidence in some malignancies that the tumor cells are organized as a hierarchy originating from rare stem cells that are responsible for maintaining the tumor. We report here the identification and characterization of a cancer stem cell population from human prostate tumors, which possess a significant capacity for self-renewal. These cells are also able to regenerate the phenotypically mixed populations of nonclonogenic cells, which express differentiated cell products, such as androgen receptor and prostatic acid phosphatase. The cancer stem cells have a CD44+/alpha2beta1hi/CD133+ phenotype, and we have exploited these markers to isolate cells from a series of prostate tumors with differing Gleason grade and metastatic states. Approximately 0.1% of cells in any tumor expressed this phenotype, and there was no correlation between the number of CD44+/alpha2beta1hi/CD133+ cells and tumor grade. The identification of a prostate cancer stem cell provides a powerful tool to investigate the tumorigenic process and to develop therapies targeted to the stem cell.


Assuntos
Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Antígeno AC133 , Idoso , Antígenos CD/biossíntese , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Glicoproteínas/biossíntese , Humanos , Receptores de Hialuronatos/biossíntese , Integrina alfa2beta1/biossíntese , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Peptídeos , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/biossíntese
15.
Oncotarget ; 8(34): 56698-56713, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28915623

RESUMO

The PI3K/AKT/mTOR pathway is frequently activated in advanced prostate cancer, due to loss of the tumour suppressor PTEN, and is an important axis for drug development. We have assessed the molecular and functional consequences of pathway blockade by inhibiting AKT and mTOR kinases either in combination or as individual drug treatments. In established prostate cancer cell lines, a decrease in cell viability and in phospho-biomarker expression was observed. Although apoptosis was not induced, a G1 growth arrest was observed in PTEN null LNCaP cells, but not in BPH1 or PC3 cells. In contrast, when the AKT inhibitor AZD7328 was applied to patient-derived prostate cultures that retained expression of PTEN, activation of a compensatory Ras/MEK/ERK pathway was observed. Moreover, whilst autophagy was induced following treatment with AZD7328, cell viability was less affected in the patient-derived cultures than in cell lines. Surprisingly, treatment with a combination of both AZD7328 and two separate MEK1/2 inhibitors further enhanced phosphorylation of ERK1/2 in primary prostate cultures. However, it also induced irreversible growth arrest and senescence. Ex vivo treatment of a patient-derived xenograft (PDX) of prostate cancer with a combination of AZD7328 and the mTOR inhibitor KU-0063794, significantly reduced tumour frequency upon re-engraftment of tumour cells. The results demonstrate that single agent targeting of the PI3K/AKT/mTOR pathway triggers activation of the Ras/MEK/ERK compensatory pathway in near-patient samples. Therefore, blockade of one pathway is insufficient to treat prostate cancer in man.

16.
PLoS One ; 12(11): e0188228, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145505

RESUMO

Prostate cancer research is hampered by the lack of in vivo preclinical models that accurately reflect patient tumour biology and the clinical heterogeneity of human prostate cancer. To overcome these limitations we propagated and characterised a new collection of patient-derived prostate cancer xenografts. Tumour fragments from 147 unsupervised, surgical prostate samples were implanted subcutaneously into immunodeficient Rag2-/-γC-/- mice within 24 hours of surgery. Histologic and molecular characterisation of xenografts was compared with patient characteristics, including androgen-deprivation therapy, and exome sequencing. Xenografts were established from 47 of 147 (32%) implanted primary prostate cancers. Only 14% passaged successfully resulting in 20 stable lines; derived from 20 independent patient samples. Surprisingly, only three of the 20 lines (15%) were confirmed as prostate cancer; one line comprised of mouse stroma, and 16 were verified as human donor-derived lymphoid neoplasms. PCR for Epstein-Barr Virus (EBV) nuclear antigen, together with exome sequencing revealed that the lymphomas were exclusively EBV-associated. Genomic analysis determined that 14 of the 16 EBV+ lines had unique monoclonal or oligoclonal immunoglobulin heavy chain gene rearrangements, confirming their B-cell origin. We conclude that the generation of xenografts from tumour fragments can commonly result in B-cell lymphoma from patients carrying latent EBV. We recommend routine screening, of primary outgrowths, for latent EBV to avoid this phenomenon.


Assuntos
Herpesvirus Humano 4/patogenicidade , Linfoma/virologia , Neoplasias da Próstata/virologia , Idoso , Xenoenxertos , Humanos , Masculino , Pessoa de Meia-Idade
17.
Eur J Cancer ; 42(9): 1213-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16632344

RESUMO

Prostate cancer is the most frequently diagnosed cancer in men. Despite recent advances in the detection of early prostate cancer there is little effective therapy for patients with locally advanced and/or metastatic disease. The majority of patients with advanced disease respond initially to androgen ablation therapy. However, most go on to develop androgen-independent tumours that inevitably are fatal. A similar response is seen to chemotherapeutic and radiotherapy treatments. As a result, metastatic prostate cancer remains an incurable disease by current treatment strategies. Recent reports of cancer stem cells have prompted questions regarding the involvement of normal stem/progenitor cells in prostate tumour biology, their potential contribution to the tumour itself and whether they are the cause of tumour initiation and progression. Although still controversial, the cancer stem cell is likely to be the most crucial target in the treatment of prostate cancer, and a thorough understanding of its biology, particularly of how the cancer stem cell differs from the normal stem cell, might allow it to be targeted selectively and eliminated, thus improving therapeutic outcome.


Assuntos
Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Proliferação de Células , Transformação Celular Neoplásica , Humanos , Masculino
18.
Methods Mol Biol ; 1443: 181-201, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27246341

RESUMO

In order to fully explore the biology of a complex solid tumor such as prostate cancer, it is desirable to work with patient tissue. Only by working with cells from a tissue can we take into account patient variability and tumor heterogeneity. Cell lines have long been regarded as the workhorse of cancer research and it could be argued that they are of most use when considered within a panel of cell lines, thus taking into account specified mutations and variations in phenotype between different cell lines. However, often very different results are obtained when comparing cell lines to primary cells cultured from tissue. It stands to reason that cells cultured from patient tissue represents a close-to-patient model that should and does produce clinically relevant data. This chapter aims to illustrate the methods of processing, storing and culturing cells from prostate tissue, with a description of potential uses.


Assuntos
Células Epiteliais/citologia , Cultura Primária de Células/métodos , Próstata/citologia , Neoplasias da Próstata/patologia , Células Estromais/citologia , Coleta de Tecidos e Órgãos/métodos , Células Epiteliais/patologia , Humanos , Masculino , Próstata/patologia , Células Estromais/patologia , Células Tumorais Cultivadas
19.
Oncotarget ; 7(32): 51965-51980, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27340920

RESUMO

Radiation therapy is a major primary treatment option for both localized early stage prostate cancer, and for advanced, regionally un-resectable, cancer. However, around 30% of patients still experience biochemical recurrence after radiation therapy within 10 years. Thus, identification of better biomarkers and new targets are urgently required to improve current therapeutic strategies. The miR-99 family has been shown to play an important role in the regulation of the DNA damage response, via targeting of the SWI/SNF chromatin remodeling factors, SMARCA5 and SMARCD1 in cell line models. In the present study, we have demonstrated that low expression of miR-99a and miR-100 is present in cell populations which are relatively radiation insensitive, for example in prostate cancer stem cells and in castration-resistant prostate cancer. Additionally, treatment of cells with the synthetic glucocorticoid, Dexamethasone resulted in decreased miR-99a and 100 expression, suggesting a new mechanism of miR-99a and 100 regulation in androgen-independent prostate cells. Strikingly, treatment of prostate cells with the glucocorticoid receptor inhibitor, Mifepristone was found to sensitize prostate cells to radiation by increasing the levels of miR-99a and miR-100. These results qualify the miR99 family as markers of radiation sensitivity and as potential therapeutic targets to improve efficiency of radiotherapy.


Assuntos
MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Tolerância a Radiação/genética , Receptores de Glucocorticoides/antagonistas & inibidores , Linhagem Celular Tumoral , Dexametasona/farmacologia , Regulação Neoplásica da Expressão Gênica/genética , Glucocorticoides/farmacologia , Antagonistas de Hormônios/farmacologia , Humanos , Masculino , Mifepristona/farmacologia , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia
20.
Eur Urol ; 69(4): 551-554, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26455356

RESUMO

UNLABELLED: Benign prostatic hyperplasia (BPH) treatments have changed little over many years and do not directly address the underlying cause. Because BPH is characterised by uncontrolled cell growth, the chromosomal telomeres should be eroded in the reported absence or low levels of telomerase activity, but this is not observed. We investigated the telomere biology of cell subpopulations from BPH patients undergoing transurethral resection of prostate (TURP). Measurement of TERC, TERT, and telomerase activity revealed that only the epithelial stem-like and progenitor fractions expressed high levels of telomerase activity (p<0.01) and individual enzyme components (p<0.01). Telomerase activity and TERT expression were not detected in stromal cells. Telomere length measurements reflected this activity, although the average telomere length of (telomerase-negative) luminal cells was equivalent to that of telomerase-expressing stem/progenitor cells. Immunohistochemical analysis of patient-derived BPH arrays identified distinct areas of luminal hyperproliferation, basal hyperproliferation, and basal-luminal hyperproliferation, suggesting that basal and luminal cells can proliferate independently of each other. We propose a separate lineage for the luminal and basal cell components in BPH. PATIENT SUMMARY: We unexpectedly found an enzyme called telomerase in the cells that maintain benign prostatic hyperplasia (BPH), suggesting that telomerase inhibitors could be used to alleviate BPH symptoms.


Assuntos
Linhagem da Célula , Proliferação de Células , Próstata/enzimologia , Hiperplasia Prostática/enzimologia , Células-Tronco/enzimologia , Telomerase/metabolismo , Homeostase do Telômero , Biomarcadores/metabolismo , Humanos , Masculino , Fenótipo , Próstata/patologia , Próstata/cirurgia , Hiperplasia Prostática/genética , Hiperplasia Prostática/patologia , Hiperplasia Prostática/cirurgia , RNA/metabolismo , Células-Tronco/patologia , Telomerase/genética , Ressecção Transuretral da Próstata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA