Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 202(5): 1501-1509, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30659107

RESUMO

The metalloproteinase ADAM17 plays a pivotal role in initiating inflammation by releasing TNF from its precursor. Prolonged TNF release causes many chronic inflammatory diseases, indicating that tight regulation of ADAM17 activity is essential for resolution of inflammation. In this study, we report that the endogenous ADAM17 inhibitor TIMP-3 inhibits ADAM17 activity only when it is bound to the cell surface and that cell surface levels of TIMP-3 in endotoxin-activated human macrophages are dynamically controlled by the endocytic receptor LRP1. Pharmacological blockade of LRP1 inhibited endocytic clearance of TIMP-3, leading to an increase in cell surface levels of the inhibitor that blocked TNF release. Following LPS stimulation, TIMP-3 levels on the surface of macrophages increased 4-fold within 4 h and continued to accumulate at 6 h, before a return to baseline levels at 8 h. This dynamic regulation of cell surface TIMP-3 levels was independent of changes in TIMP-3 mRNA levels, but correlated with shedding of LRP1. These results shed light on the basic mechanisms that maintain a regulated inflammatory response and ensure its timely resolution.


Assuntos
Proteína ADAM17/imunologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , Macrófagos/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-3/imunologia , Fatores de Necrose Tumoral/imunologia , Proteína ADAM17/antagonistas & inibidores , Células Cultivadas , Endotoxinas/farmacologia , Humanos , Lipopolissacarídeos/farmacologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Macrófagos/imunologia , Inibidor Tecidual de Metaloproteinase-3/antagonistas & inibidores , Inibidores do Fator de Necrose Tumoral
2.
J Neurochem ; 136(3): 564-72, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26499872

RESUMO

The co-involvement of tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) during blood-brain barrier (BBB) injury has been reported in various models of neuroinflammation, although the precise functional interplay between these archetypal proinflammatory cytokines remains largely undefined within this context. In the current paper, we tested the hypothesis that TNF-α-mediated BBB disruption is measurably attributable in-part to induction of microvascular endothelial IL-6 production. In initial experiments, we observed that treatment of human brain microvascular endothelial cells (HBMvECs) with TNF-α (0-100 ng/mL, 0-24 h) robustly elicited both time- and dose-dependent induction of IL-6 expression and release, as well as expression of the IL-6 family receptor, GP130. Further experiments demonstrated that the TNF-α-dependent generation of reactive oxygen species, down-regulation of adherens/tight junction proteins, and concomitant elevation of HBMvEC permeability, were all significantly attenuated by blockade of IL-6 signalling using either an anti-IL-6 neutralizing antibody or an IL-6 siRNA. Based on these observations, we conclude that TNF-α treatment of HBMvECs in vitro activates IL-6 production and signalling, events that were shown to synergize with TNF-α actions to elicit HBMvEC permeabilization. These novel findings offer a constructive insight into the specific contribution of downstream cytokine induction to the injurious actions of TNF-α at the BBB microvascular endothelium interface. The co-involvement of tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) during blood-brain barrier (BBB) injury has been widely reported. Using human brain microvascular endothelial cells (HBMvEC), we show that TNF-α-mediated BBB disruption is measurably attributable in-part to induction of endothelial IL-6 production and signalling. We demonstrate that the TNF-α-dependent generation of reactive oxygen species (ROS), down-regulation of interendothelial junctions, and concomitant elevation of HBMvEC permeability, could be significantly attenuated by using either an IL-6 neutralizing antibody or an IL-6-specific siRNA. These findings provide insight into the complex nature of proinflammatory cytokine injury at the BBB microvascular endothelium interface.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Análise de Variância , Anticorpos/farmacologia , Antígenos CD/metabolismo , Caderinas/metabolismo , Claudina-5/metabolismo , Relação Dose-Resposta a Droga , Endotélio/citologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/imunologia , Interleucina-6/farmacologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
3.
Cell Tissue Res ; 358(1): 203-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24992927

RESUMO

Differentiation of resident multipotent vascular stem cells (MVSCs) or de-differentiation of vascular smooth muscle cells (vSMCs) might be responsible for the SMC phenotype that plays a major role in vascular diseases such as arteriosclerosis and restenosis. We examined vSMCs from three different species (rat, murine and bovine) to establish whether they exhibit neural stem cell characteristics typical of MVSCs. We determined their SMC differentiation, neural stem cell marker expression and multipotency following induction in vitro by using immunocytochemistry, confocal microscopy, fluorescence-activated cell sorting analysis and quantitative real-time polymerase chain reaction. MVSCs isolated from rat aortic explants, enzymatically dispersed rat SMCs and rat bone-marrow-derived mesenchymal stem cells served as controls. Murine carotid artery lysates and primary rat aortic vSMCs were both myosin-heavy-chain-positive but weakly expressed the neural crest stem cell marker, Sox10. Each vSMC line examined expressed SMC differentiation markers (smooth muscle α-actin, myosin heavy chain and calponin), neural crest stem cell markers (Sox10(+), Sox17(+)) and a glia marker (S100ß(+)). Serum deprivation significantly increased calponin and myosin heavy chain expression and decreased stem cell marker expression, when compared with serum-rich conditions. vSMCs did not differentiate to adipocytes or osteoblasts following adipogenic or osteogenic inductive stimulation, respectively, or respond to transforming growth factor-ß1 or Notch following γ-secretase inhibition. Thus, vascular SMCs in culture express neural stem cell markers typical of MVSCs, concomitant with SMC differentiation markers, but do not retain their multipotency. The ultimate origin of these cells might have important implications for their use in investigations of vascular proliferative disease in vitro.


Assuntos
Células da Medula Óssea/metabolismo , Artérias Carótidas/metabolismo , Células-Tronco Multipotentes/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Células da Medula Óssea/citologia , Artérias Carótidas/citologia , Linhagem Celular , Camundongos , Células-Tronco Multipotentes/citologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Ratos
4.
J Leukoc Biol ; 105(1): 81-92, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376187

RESUMO

Heparan sulfate is found on the surface of most cell types, as well as in basement membranes and extracellular matrices. Its strong anionic properties and highly variable structure enable this glycosaminoglycan to provide binding sites for numerous protein ligands, including many soluble mediators of the immune system, and may promote or inhibit their activity. The formation of ligand binding sites on heparan sulfate (HS) occurs in a tissue- and context-specific fashion through the action of several families of enzymes, most of which have multiple isoforms with subtly different specificities. Changes in the expression levels of these biosynthetic enzymes occur in response to inflammatory stimuli, resulting in structurally different HS and acquisition or loss of binding sites for immune mediators. In this review, we discuss the multiple roles for HS in regulating immune responses, and the evidence for inflammation-associated changes to HS structure.


Assuntos
Heparitina Sulfato/metabolismo , Imunidade , Inflamação/patologia , Animais , Microambiente Celular , Humanos , Leucócitos/metabolismo , Fagocitose
5.
J Cereb Blood Flow Metab ; 35(10): 1648-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25991069

RESUMO

The regulatory interplay between laminar shear stress and proinflammatory cytokines during homeostatic maintenance of the brain microvascular endothelium is largely undefined. We hypothesized that laminar shear could counteract the injurious actions of proinflammatory cytokines on human brain microvascular endothelial cell (HBMvEC) barrier properties, in-part through suppression of cellular redox signaling. For these investigations, HBMvECs were exposed to either shear stress (8 dynes/cm(2), 24 hours) or cytokines (tumor necrosis factor-α (TNF-α) or interleukin-6 (IL-6), 0 to 100 ng/mL, 6 or 18 hours). Human brain microvascular endothelial cell 'preshearing'±cytokine exposure was also performed. Either cytokine dose-dependently decreased expression and increased phosphorylation (pTyr/pThr) of interendothelial occludin, claudin-5, and vascular endothelial-cadherin; observations directly correlating to endothelial barrier reduction, and in precise contrast to effects seen with shear. We further observed that, relative to unsheared cells, HBMvECs presheared for 24 hours exhibited significantly reduced reactive oxygen species production and barrier permeabilization in response to either TNF-α or IL-6 treatment. Shear also downregulated NADPH oxidase (nicotinamide adenine dinucleotide phosphate-oxidase) activation in HBMvECs, as manifested in the reduced expression and coassociation of gp91phox and p47phox. These findings lead us to conclude that physiologic shear can protect the brain microvascular endothelium from injurious cytokine effects on interendothelial junctions and barrier function by regulating the cellular redox state in-part through NADPH oxidase inhibition.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/patologia , Citocinas/toxicidade , Endotélio Vascular/patologia , Espécies Reativas de Oxigênio/metabolismo , Permeabilidade Capilar , Relação Dose-Resposta a Droga , Humanos , Junções Intercelulares , Interleucina-6/farmacologia , NADPH Oxidases/biossíntese , Cultura Primária de Células , Estresse Mecânico , Fator de Necrose Tumoral alfa/farmacologia
6.
Front Immunol ; 6: 133, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25873919

RESUMO

Dendritic cells (DCs) provide an essential link between innate and adaptive immunity. At the site of infection, antigens recognized by DCs via pattern-recognition receptors, such as Toll-like receptors (TLRs), initiate a specific immune response. Depending on the nature of the antigen, DCs secrete distinct cytokines with which they orchestrate homeostasis and pathogen clearance. Dysregulation of this process can lead to unnecessary inflammation, which can result in a plethora of inflammatory diseases. Therefore, the secretion of cytokines from DCs is tightly regulated and this regulation is facilitated by highly conserved trafficking protein families. These proteins control the transport of vesicles from the Golgi complex to the cell surface and between organelles. In this review, we will discuss the role of soluble n-ethylmaleimide-sensitive factor attachment protein receptor proteins (SNAREs) in DCs, both as facilitators of secretion and as useful tools to determine the pathways of secretion through their definite locations within the cells and inherent specificity in opposing binding partners on vesicles and target membranes. The role of SNAREs in DC function may present an opportunity to explore these proteins as novel targets in inflammatory disease.

7.
Innate Immun ; 21(4): 358-69, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25298104

RESUMO

Intestinal macrophages originate from inflammatory blood monocytes which migrate to the intestine, where they differentiate into anti-inflammatory macrophages through a number of transitional stages. These macrophages typically remain hypo-responsive to commensal bacteria and food Ags in the intestine, yet also retain the ability to react to invading pathogens. In this study we examined the role of epithelial cells in inducing this intestinal macrophage phenotype. Using an in vitro system we showed that, in two-dimensional culture, epithelial cell-derived factors from a murine cell line, CMT-93, are sufficient to induce phenotypic changes in macrophages. Exposure of monocyte-derived macrophages, J774A.1, to soluble factors derived from epithelial cells, induced an altered phenotype similar to that of intestinal macrophages with decreased production of IL-12p40, IL-6 and IL-23 and expression of MHC ІІ and CD80 following TLR ligation. Furthermore, these conditioned macrophages showed enhanced phagocytic activity in parallel with low respiratory burst and NO production, similar to the response seen in intestinal macrophages. Our findings suggest a role for colonic epithelial cells in modulation of macrophage phenotype for maintenance of gut homeostasis. Further understanding of the cell interactions that maintain homeostasis in the gut could reveal novel therapeutic strategies to restore the balance in disease.


Assuntos
Colo/citologia , Células Epiteliais/imunologia , Macrófagos/imunologia , Animais , Antígeno B7-1/metabolismo , Comunicação Celular , Diferenciação Celular , Linhagem Celular , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Homeostase/imunologia , Imunidade nas Mucosas , Camundongos , Óxido Nítrico/metabolismo , Fagocitose/efeitos dos fármacos , Fenótipo
8.
Front Immunol ; 5: 691, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25674084

RESUMO

The role of dendritic cells (DCs) in directing the immune response is due in part to their capacity to produce a range of cytokines. Importantly, DCs are a source of cytokines, which can promote T cell survival and T helper cell differentiation. While it has become evident that soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptors (SNAREs) are involved in membrane fusion and ultimately cytokine release, little is known about which members of this family facilitate the secretion of specific cytokines from DCs. We profiled mRNA of 18 SNARE proteins in DCs in response to activation with a panel of three Toll-like receptors (TLR) ligands and show differential expression of SNAREs in response to their stimulus and subsequent secretion patterns. Of interest, STX3 mRNA was up-regulated in response to TLR4 and TLR7 activation but not TLR2 activation. This correlated with secretion of IL-6 and MIP-1α. Abolishment of STX3 from DCs by RNAi resulted in the attenuation of IL-6 levels and to some extent MIP-1α levels. Analysis of subcellular location of STX3 by confocal microscopy showed translocation of STX3 to the cell membrane only in DCs secreting IL-6 or MIP-1α, indicating a role for STX3 in trafficking of these immune mediators. Given the role of IL-6 in Th17 differentiation, these findings suggest the potential of STX3 as therapeutic target in inflammatory disease.

9.
PLoS One ; 9(7): e101815, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24992685

RESUMO

BACKGROUND AND OBJECTIVES: Blood-brain barrier (BBB) dysfunction is an integral feature of neurological disorders and involves the action of multiple proinflammatory cytokines on the microvascular endothelial cells lining cerebral capillaries. There is still however, considerable ambiguity throughout the scientific literature regarding the mechanistic role(s) of cytokines in this context, thereby warranting a comprehensive in vitro investigation into how different cytokines may cause dysregulation of adherens and tight junctions leading to BBB permeabilization. METHODS: The present study employs human brain microvascular endothelial cells (HBMvECs) to compare/contrast the effects of TNF-α and IL-6 on BBB characteristics ranging from the expression of interendothelial junction proteins (VE-cadherin, occludin and claudin-5) to endothelial monolayer permeability. The contribution of cytokine-induced NADPH oxidase activation to altered barrier phenotype was also investigated. RESULTS: In response to treatment with either TNF-α or IL-6 (0-100 ng/ml, 0-24 hrs), our studies consistently demonstrated significant dose- and time-dependent decreases in the expression of all interendothelial junction proteins examined, in parallel with dose- and time-dependent increases in ROS generation and HBMvEC permeability. Increased expression and co-association of gp91 and p47, pivotal NADPH oxidase subunits, was also observed in response to either cytokine. Finally, cytokine-dependent effects on junctional protein expression, ROS generation and endothelial permeability could all be attenuated to a comparable extent using a range of antioxidant strategies, which included ROS depleting agents (superoxide dismutase, catalase, N-acetylcysteine, apocynin) and targeted NADPH oxidase blockade (gp91 and p47 siRNA, NSC23766). CONCLUSION: A timely and wide-ranging investigation comparing the permeabilizing actions of TNF-α and IL-6 in HBMvECs is presented, in which we demonstrate how either cytokine can similarly downregulate the expression of interendothelial adherens and tight junction proteins leading to elevation of paracellular permeability. The cytokine-dependent activation of NADPH oxidase leading to ROS generation was also confirmed to be responsible in-part for these events.


Assuntos
Junções Aderentes/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Células Endoteliais/citologia , Interleucina-6/farmacologia , Junções Íntimas/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Células Cultivadas , Regulação para Baixo , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Microbes Infect ; 16(5): 391-400, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24560642

RESUMO

Clostridium difficile is the leading cause of hospital-acquired diarrhoea worldwide, and if the bacterium is not cleared effectively it can pose a risk of recurrent infections and complications such as colitis, sepsis and death. In this study we demonstrate that surface layer proteins from the one of the most frequently acquired strains of C. difficile, activate mechanisms in murine macrophage in vitro that are associated with clearance of bacterial infection. Surface layer proteins (SLPs) isolated from C. difficile induced the production of pro-inflammatory cytokines and chemokines and increased macrophage migration and phagocytotic activity in vitro. Furthermore, we also observed up-regulation of a number of cell surface markers on the macrophage, which are important in pathogen recognition and antigen presentation. The effects of SLPs on macrophages were reversed in the presence of a p38 inhibitor, indicating the potential importance of this signalling protein in how SLP activates the immune system. In conclusion this study shows that surface layer proteins from a common strain of C. difficile can activate a clearance response in macrophage and suggests that these proteins are important in clearance of C. difficile infection. Understanding how the immune system clears C. difficile infection could offer important insights for new treatment strategies.


Assuntos
Proteínas de Bactérias/imunologia , Clostridioides difficile/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Glicoproteínas de Membrana/imunologia , Animais , Movimento Celular , Citocinas/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Fagocitose
11.
Vasc Cell ; 6(1): 6, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24628920

RESUMO

BACKGROUND: The A10 and A7r5 cell lines derived from the thoracic aorta of embryonic rat are widely used as models of non-differentiated, neonatal and neointimal vascular smooth muscle cells in culture. The recent discovery of resident multipotent vascular stem cells within the vessel wall has necessitated the identity and origin of these vascular cells be revisited. In this context, we examined A10 and A7r5 cell lines to establish the similarities and differences between these cell lines and multipotent vascular stem cells isolated from adult rat aortas by determining their differentiation state, stem cell marker expression and their multipotency potential in vitro. METHODS: Vascular smooth muscle cell differentiation markers (alpha-actin, myosin heavy chain, calponin) and stem cell marker expression (Sox10, Sox17 and S100ß) were assessed using immunocytochemistry, confocal microscopy, FACS analysis and real-time quantitative PCR. RESULTS: Both A10 and A7r5 expressed vascular smooth muscle differentiation, markers, smooth muscle alpha - actin, smooth muscle myosin heavy chain and calponin. In parallel analysis, multipotent vascular stem cells isolated from rat aortic explants were immunocytochemically myosin heavy chain negative but positive for the neural stem cell markers Sox10+, a neural crest marker, Sox17+ the endoderm marker, and the glia marker, S100ß+. This multipotent vascular stem cell marker profile was detected in both embryonic vascular cell lines in addition to the adventitial progenitor stem cell marker, stem cell antigen-1, Sca1+. Serum deprivation resulted in a significant increase in stem cell and smooth muscle cell differentiation marker expression, when compared to serum treated cells. Both cell types exhibited weak multipotency following adipocyte inductive stimulation. Moreover, Notch signaling blockade following γ-secretase inhibition with DAPT enhanced the expression of both vascular smooth muscle and stem cell markers. CONCLUSIONS: We conclude that A10 and A7r5 cells share similar neural stem cell markers to both multipotent vascular stem cells and adventitial progenitors that are indicative of neointimal stem-derived smooth muscle cells. This may have important implications for their use in examining vascular contractile and proliferative phenotypes in vitro.

12.
Am J Clin Pathol ; 139(6): 736-45, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23690115

RESUMO

Atypia of undetermined significance (AUS) in thyroid fine-needle aspiration (FNA) has a low to intermediate incidence of malignancy, and objective criteria could allow for improved assessment of malignancy. Consecutive thyroid FNA AUS cases with surgical excision were selected. Whole-slide images (WSIs) were evaluated for basic criteria by image analysis, including total groups and nuclear/cytoplasmic (N/C) ratio. The 44 cases encompassed 23 benign and 21 malignant entities. Seventeen (81%) of 21 malignant cases and 11 (48%) of 23 benign cases had an N/C ratio of 0.50 or less. An N/C ratio of 0.50 or less had an odds ratio for malignancy of 4.64 (P = .03). A combined category of an N/C ratio of 0.50 or less and greater than 20 cell groups had an odds ratio for malignancy of 7.0 (P = .04). Establishing defined objective WSI criteria has the potential to provide an assessment of malignancy for AUS thyroid FNA cases.


Assuntos
Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/patologia , Adulto , Idoso , Biópsia por Agulha Fina , Humanos , Processamento de Imagem Assistida por Computador , Pessoa de Meia-Idade , Glândula Tireoide/cirurgia , Neoplasias da Glândula Tireoide/cirurgia , Nódulo da Glândula Tireoide/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA