Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Plant J ; 117(1): 177-192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37797086

RESUMO

'Living fossils', that is, ancient lineages of low taxonomic diversity, represent an exceptional evolutionary heritage, yet we know little about how demographic history and deleterious mutation load have affected their long-term survival and extinction risk. We performed whole-genome sequencing and population genomic analyses on Dipteronia sinensis and D. dyeriana, two East Asian Tertiary relict trees. We found large-scale genome reorganizations and identified species-specific genes under positive selection that are likely involved in adaptation. Our demographic analyses suggest that the wider-ranged D. sinensis repeatedly recovered from population bottlenecks over late Tertiary/Quaternary periods of adverse climate conditions, while the population size of the narrow-ranged D. dyeriana steadily decreased since the late Miocene, especially after the Last Glacial Maximum (LGM). We conclude that the efficient purging of deleterious mutations in D. sinensis facilitated its survival and repeated demographic recovery. By contrast, in D. dyeriana, increased genetic drift and reduced selection efficacy, due to recent severe population bottlenecks and a likely preponderance of vegetative propagation, resulted in fixation of strongly deleterious mutations, reduced fitness, and continuous population decline, with likely detrimental consequences for the species' future viability and adaptive potential. Overall, our findings highlight the significant impact of demographic history on levels of accumulation and purging of putatively deleterious mutations that likely determine the long-term survival and extinction risk of Tertiary relict trees.


Assuntos
Fósseis , Endogamia , Árvores , Animais , Variação Genética , Metagenômica , Mutação , Árvores/genética
2.
Plant J ; 118(5): 1372-1387, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38343032

RESUMO

Understanding the genetic basis of population divergence and adaptation is an important goal in population genetics and evolutionary biology. However, the relative roles of demographic history, gene flow, and/or selective regime in driving genomic divergence, climatic adaptation, and speciation in non-model tree species are not yet fully understood. To address this issue, we generated whole-genome resequencing data of Liquidambar formosana and L. acalycina, which are broadly sympatric but altitudinally segregated in the Tertiary relict forests of subtropical China. We integrated genomic and environmental data to investigate the demographic history, genomic divergence, and climatic adaptation of these two sister species. We inferred a scenario of allopatric species divergence during the late Miocene, followed by secondary contact during the Holocene. We identified multiple genomic islands of elevated divergence that mainly evolved through divergence hitchhiking and recombination rate variation, likely fostered by long-term refugial isolation and recent differential introgression in low-recombination genomic regions. We also found some candidate genes with divergent selection signatures potentially involved in climatic adaptation and reproductive isolation. Our results contribute to a better understanding of how late Tertiary/Quaternary climatic change influenced speciation, genomic divergence, climatic adaptation, and introgressive hybridization in East Asia's Tertiary relict flora. In addition, they should facilitate future evolutionary, conservation genomics, and molecular breeding studies in Liquidambar, a genus of important medicinal and ornamental values.


Assuntos
Genoma de Planta , Genoma de Planta/genética , China , Adaptação Fisiológica/genética , Fluxo Gênico , Genética Populacional , Genômica , Isolamento Reprodutivo , Filogenia , Variação Genética , Clima , Especiação Genética
3.
Plant J ; 114(4): 805-823, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36864731

RESUMO

Here, we present a high-quality chromosome-scale genome assembly (2.19 Gb) and annotation of Tetrastigma hemsleyanum, a perennial herbaceous liana native to subtropical China with diverse medicinal applications. Approximately 73% of the genome was comprised of transposable elements (TEs), of which long terminal repeat retrotransposons (LTR-RTs) were a predominant group (69% of the genome). The genome size increase of T. hemsleyanum (relative to Vitis species) was mostly due to the proliferation of LTR-RTs. Of the different modes of gene duplication identified, transposed duplication (TRD) and dispersed duplication (DSD) were the predominant ones. Genes, particularly those involved in the phenylpropanoid-flavonoid (PF) pathway and those associated with therapeutic properties and environmental stress resistance, were significantly amplified through recent tandem duplications. We dated the divergence of two intraspecific lineages in Southwest (SW) versus Central-South-East (CSE) China to the late Miocene (approximately 5.2 million years ago). Of those, the former showed more upregulated genes and metabolites. Based on resequencing data of 38 individuals representing both lineages, we identified various candidate genes related to 'response to stimulus' and 'biosynthetic process', including ThFLS11, which is putatively involved in flavonoid accumulation. Overall, this study provides abundant genomic resources for future evolutionary, ecological, and functional genomics studies in T. hemsleyanum and related species.


Assuntos
Flavonoides , Vitaceae , Vitaceae/genética , Genômica , Cromossomos , Evolução Molecular
4.
Planta ; 257(2): 45, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695892

RESUMO

MAIN CONCLUSION: This study reported seven new plastomes from Impatiens and observed three highly variable regions for phylogeny and DNA barcoding, which resolved the relationships among sections of subgenus Impatiens. Impatiens L. (Balsaminaceae, Ericales) is one of the largest and most diverse genera of angiosperms, widely known for its taxonomic difficulty. In this study, we reevaluated the infrageneric relationships within the genus Impatiens, using complete plastome sequence data. Seven complete plastomes of Impatiens (representing 6 species) were newly sequenced and characterized along with 20 previously published plastomes of other Impatiens species, plus 2 plastomes of outgroups (Hydrocera triflora, Balsaminaceae; Marcgravia coriacea, Marcgraviaceae). The total size of these 29 plastomes ranged from 151,538 bp to 152,917 bp, except 2 samples of Impatiens morsei, which exhibited a shorter length and lost some genes encoding NADH dehydrogenase subunits. Moreover, the number of simple sequence repeats (SSRs) ranged from 51 to 113, and the number of long repeats from 17 to 26. In addition, three highly variable regions were identified (trnG-GCC (The previous one), ndhF-rpl32-trnL-UGA-ccsA, and ycf1). Our phylogenomic analysis based on 80 plastome-derived protein-coding genes strongly supported the monophyly of Impatiens and its two subgenera (Clavicarpa and Impatiens), and fully resolved relationships among the six (out of seven) sampled sections of subgenus Impatiens. Overall, the plastome DNA markers and phylogenetic results reported in this study will facilitate future identification, taxonomic and DNA barcoding studies in Impatiens as well as evolutionary studies in Balsaminaceae.


Assuntos
Balsaminaceae , Impatiens , Balsaminaceae/genética , Impatiens/genética , Filogenia , Sequência de Bases , Evolução Molecular
5.
Plant Biotechnol J ; 20(4): 761-776, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34861095

RESUMO

Humans have domesticated diverse species from across the plant kingdom; however, our current understanding of plant domestication is largely founded on major cereal crops. Here, we examine the evolutionary processes and genetic basis underlying the domestication of water caltrop (Trapa spp., Lythraceae), a traditional, yet presently underutilized non-cereal crop that sustained early Chinese agriculturalists. We generated a chromosome-level genome assembly of tetraploid T. natans, and then divided the allotetraploid genome into two subgenomes. Based on resequencing data from 57 accessions, representing cultivated diploid T. natans, wild T. natans (2x and 4x) and diploid T. incisa, we showed that water caltrop was likely first domesticated in the Yangtze River Valley as early as 6300 yr BP, and experienced a second improvement c. 800 years ago. We also provided strong support for an allotetraploid origin of T. natans within the past 230 000-310 000 years. By integrating selective sweep and transcriptome profiling analyses, we identified a number of genes potentially selected and/or differentially expressed during domestication, some of which likely contributed not only to larger fruit sizes but also to a more vigorous root system, facilitating nutrient uptake, environmental stress response and underwater photosynthesis. Our results shed light on the evolutionary and domestication history of water caltrop, one of the earliest domesticated crops in China. This study has implications for genomic-assisted breeding of this presently underutilized aquatic plant, and improves our general understanding of plant domestication.


Assuntos
Domesticação , Lythraceae , Produtos Agrícolas/genética , Perfilação da Expressão Gênica , Genoma de Planta/genética , Lythraceae/genética , Melhoramento Vegetal , Água
6.
Mol Phylogenet Evol ; 169: 107427, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35131422

RESUMO

Evolutionary and biogeographic processes determine species richness patterns of vascular plants between Eastern Asia (EA) and Eastern North America (ENA). However, the strikingly higher species richness of EA relative to ENA remains poorly understood from this perspective. Here, we studied the relative importance of biogeographical, evolutionary and ecological factors underlying differences in species richness between EA and ENA in Podophylloideae (Berberidaceae, Ranunculales; in total 10 spp. in EA vs. 2 spp. in ENA). Based on large-scale transcriptome data, our phylogenomic analyses strongly supported Podophylloideae and its two multi-species genera, i.e. Dysosma (EA) and Diphylleia (EA/ENA), as monophyletic groups. Sinopodophyllum hexandrum (EA) was identified as sister to the remainder of Podophylloideae. Dysosma (7 spp.) was recovered as sister to Podophyllum peltatum (ENA), forming an EA-ENA disjunct pair with a strong bias of species diversity in the EA counterpart. Our biogeographic analyses support the 'out-of-Tibet' hypothesis, suggesting that Podophylloideae started to diversify in the Himalaya-Hengduan Mountains (Mid-Miocene) and migrated eastward (since the Late Miocene) into Central-eastern China, Japan, and ENA (only P. peltatum and Diphylleia cymosa). Overall, we conclude that the striking species diversity anomaly between EA and ENA in Podophylloideae may be explained by a combination of (1) a longer period of time available to accumulate species in EA; and (2) a greater diversification rate in EA, which might have been promoted by greater physiographic and environmental heterogeneity in this region.


Assuntos
Berberidaceae , Evolução Molecular , Filogenia , Ranunculales , Berberidaceae/genética , Ásia Oriental , América do Norte , Ranunculales/genética
7.
Ann Bot ; 130(1): 53-64, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35533344

RESUMO

BACKGROUND AND AIMS: The East Asian-Tethyan disjunction pattern and its mechanisms of formation have long been of interest to researchers. Here, we studied the biogeographical history of Asteraceae tribe Cardueae, with a particular focus on the temperate East Asian genus Atractylodes DC., to understand the role of tectonic and climatic events in driving the diversification and disjunctions of the genus. METHODS: A total of 76 samples of Atractylodes from 36 locations were collected for RAD-sequencing. Three single nucleotide polymorphism (SNP) datasets based on different filtering strategies were used for phylogenetic analyses. Molecular dating and ancestral distribution reconstruction were performed using both chloroplast DNA sequences (127 Cardueae samples) and SNP (36 Atractylodes samples) datasets. KEY RESULTS: Six species of Atractylodes were well resolved as individually monophyletic, although some introgression was identified among accessions of A. chinensis, A. lancea and A. koreana. Dispersal of the subtribe Carlininae from the Mediterranean to East Asia occurred after divergence between Atractylodes and Carlina L. + Atractylis L. + Thevenotia DC. at ~31.57 Ma, resulting in an East Asian-Tethyan disjunction. Diversification of Atractylodes in East Asia mainly occurred from the Late Miocene to the Early Pleistocene. CONCLUSIONS: Aridification of Asia and the closure of the Turgai Strait in the Late Oligocene promoted the dispersal of Cardueae from the Mediterranean to East China. Subsequent uplift of the Qinghai-Tibet Plateau as well as changes in Asian monsoon systems resulted in an East Asian-Tethyan disjunction between Atractylodes and Carlina + Atractylis + Thevenotia. In addition, Late Miocene to Quaternary climates and sea level fluctuations played major roles in the diversification of Atractylodes. Through this study of different taxonomic levels using genomic data, we have revealed an overlooked dispersal route between the Mediterranean and far East Asia (Japan/Korea) via Central Asia and East China.


Assuntos
Atractylodes , Filogenia , Dispersão Vegetal , Atractylodes/classificação , Atractylodes/genética , Ásia Oriental , Filogeografia
8.
New Phytol ; 232(2): 853-867, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34309843

RESUMO

Questions concerning the evolution of complex biological structures are central to the field of evolutionary biology. Yet, still little information is known about the modes and temporal dynamics of three-dimensional (3D) flower shape evolution across the history of clades. Here, we combined high-resolution X-ray computed tomography with 3D geometric morphometrics and phylogenetic comparative methods to test models of whole-flower shape evolution in the orchid family, using an early Late Miocene clade (c. 50 spp.) of Malagasy Bulbophyllum as model system. Based on landmark data of 38 species, our high-dimensional model fitting decisively rejects a purely neutral mode of evolution, suggesting instead that flower shapes evolved towards a primary adaptive optimum. Only a small number of recently evolved species/lineages attained alternative shape optima, resulting in an increased rate of phenotypic evolution. Our findings provide evidence of constrained 3D flower shape evolution in a small-sized clade of tropical orchids, resulting in low rates of phenotypic evolution and uncoupled trait-diversification rates. We hypothesise that this deep imprint of evolutionary constraint on highly complex floral structures might reflect long-term (directional and/or stabilizing) selection exerted by the group's main pollinators (flies).


Assuntos
Orchidaceae , Evolução Biológica , Flores , Orchidaceae/genética , Fenótipo , Filogenia
9.
New Phytol ; 231(3): 1236-1248, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33960438

RESUMO

Despite growing evidence that niche shifts are more common in flowering plants than previously thought, little is known of whether such shifts are promoted by changes in photosynthetic pathways. Here we combine the most complete phylogeny for epiphytic Malagasy Bulbophyllum orchids (c. 210 spp.) with climatic niche and carbon isotope ratios to infer the group's spatial-temporal history, and the role of strongly expressed crassulacean acid metabolism (CAM) in facilitating niche shifts and diversification. We find that most extant species still retain niche (Central Highland) and photosynthesis (C3 ) states as present in the single mid-Miocene (c. 12.70 million yr ago (Ma)) ancestor colonizing Madagascar. However, we also infer a major transition to CAM, linked to a late Miocene (c. 7.36 Ma) invasion of species from the sub-humid highland first into the island's humid eastern coastal, and then into the seasonally dry 'Northwest Sambirano' rainforests, yet without significant effect on diversification rates. These findings indicate that CAM in tropical epiphytes may be selectively advantageous even in high rainfall habitats, rather than presenting a mere adaptation to dry environments or epiphytism per se. Overall, our study qualifies CAM as an evolutionary 'gateway' trait that considerably widened the spatial-ecological amplitude of Madagascar's most species-rich orchid genus.


Assuntos
Orchidaceae , Metabolismo Ácido das Crassuláceas , Ecossistema , Madagáscar , Filogenia
10.
Mol Ecol ; 30(7): 1704-1720, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33548078

RESUMO

Distinguishing between secondary versus primary hybrid zone formation remains a challenging task as, for instance, the time window in which these historical (vicariant) versus contemporary (environmental-selective) processes are distinguishable may be relatively narrow. Here, we examine the origin and structure of a transition zone between two subspecies of Tephroseris helenitis along the central Northern Alps, using molecular (AFLP) and morphological (achene type) data in combination with ecological niche models (ENMs) to hindcast ranges at the Last Glacial Maximum (LGM) and mid-Holocene. Samples were collected over a c. 350 km long transect, largely covered by ice during the LGM. Genetically nonadmixed individuals of subspp. helenitis versus salisburgensis dominated the westernmost versus eastern transect areas, with admixed individuals occurring in between. Clines for achene morphology and outlier loci potentially under climate-driven selection were steep, largely noncoincidental, and displaced to the east of the cline centre for neutral AFLPs. During the LGM, ssp. helenitis should have been able to persist in a refugium southwest of the transect, while suitable habitat for ssp. salisburgensis was apparently absent at this time. Together with patterns of genetic and clinal variation, our ENM data are suggestive of a primary hybrid zone that originated after the species' postglacial, eastward expansion. The observed clinal changes may thus reflect random/nonadaptive processes during expansion and selection on particular loci, and possibly achene type, in response to a long-term, west-to-east climate gradient in the direction of more stressful (e.g., wetter/cooler) conditions. Overall, this study adds to the vast hybrid zone literature a rare example of a hybrid zone caused by primary differentiation within a plant species, underlaid by historical range expansion.


Assuntos
Asteraceae , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Asteraceae/genética , Clima , Ecossistema , Variação Genética , Humanos , Filogeografia , Refúgio de Vida Selvagem
11.
New Phytol ; 228(5): 1674-1689, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32643803

RESUMO

'Living fossils' are testimonies of long-term sustained ecological success, but how demographic history and natural selection contributed to their survival, resilience, and persistence in the face of Quaternary climate fluctuations remains unclear. To better understand the interplay between demographic history and selection in shaping genomic diversity and evolution of such organisms, we assembled the whole genome of Cercidiphyllum japonicum, a widespread East Asian Tertiary relict tree, and resequenced 99 individuals of C. japonicum and its sister species, Cercidiphyllum magnificum (Central Japan). We dated this speciation event to the mid-Miocene, and the intraspecific lineage divergence of C. japonicum (China vs Japan) to the Early Pliocene. Throughout climatic upheavals of the late Tertiary/Quaternary, population bottlenecks greatly reduced the genetic diversity of C. japonicum. However, this polymorphism loss was likely counteracted by, first, long-term balancing selection at multiple chromosomal and heterozygous gene regions, potentially reflecting overdominance, and, second, selective sweeps at stress response and growth-related genes likely involved in local adaptation. Our findings contribute to a better understanding of how living fossils have survived climatic upheaval and maintained an extensive geographic range; that is, both types of selection could be major factors contributing to the species' survival, resilience, and persistence.


Assuntos
Fósseis , Genômica , Árvores , China , Japão , Filogenia , Seleção Genética
12.
Mol Phylogenet Evol ; 150: 106878, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32512196

RESUMO

Stachyuraceae, an East Asian endemic family of shrubs or small trees, comprises a single genus, Stachyurus (c. 11 spp.). Despite previous extensive studies based on both morphology and molecular data, species relationships within Stachyurus are still unresolved. Here, we employed transcriptome data aiming to elucidate the evolutionary history of Stachyurus and investigate possible causes of phylogenetic incongruence among individual gene trees in this genus. Our transcriptome phylogeny strongly supports four major clades of Stachyurus, with S. praecox from Japan being resolved as sister to the remainder of the genus on the Asian mainland. The deciduous S. praecox in Japan appears to have originated in the late Miocene, while the remainder diversified and expanded on the mainland over late Miocene to Pliocene/early Pleistocene times. These latter episodes of diversification and expansion were likely promoted by changes in paleoclimate and orogeny (e.g., late Miocene uplift of the Hengduan Mts. and/or enforcement of the East Asian summer monsoon). Species of this genus evolved from a deciduous ancestor, followed by multiple and independent transitions in leaf habit, possibly reflecting climate-related adaptations. Phylogenetic incongruence observed among individual gene trees may be attributable to incomplete lineage sorting following ancient rapid diversification and frequent interspecific gene flow caused by hybridization events. In sum, this study demonstrates the potential usefulness of genome-wide phylogenetic incongruence and network analyses for reconstructing complex evolutionary histories in rapidly diversifying and naturally hybridizing species groups.


Assuntos
Magnoliopsida/classificação , Evolução Biológica , Hibridização Genética , Magnoliopsida/genética , Filogenia , Folhas de Planta/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Transcriptoma
13.
BMC Evol Biol ; 19(1): 93, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31014234

RESUMO

BACKGROUND: Tropical rainforests (TRFs) harbour almost half of the world's vascular plant species diversity while covering only about 6-7% of land. However, why species richness varies amongst the Earth's major TRF regions remains poorly understood. Here we investigate the evolutionary processes shaping continental species richness disparities of the pantropical, epiphytic and mostly TRF-dwelling orchid mega-genus Bulbophyllum (c. 1948 spp. in total) using diversification analyses based on a time-calibrated molecular phylogeny (including c. 45-50% spp. each from Madagascar, Africa, Neotropics, and 8.4% from the Asia-Pacific region), coupled with ecological niche modelling (ENM) of geographic distributions under present and past (Last Glacial Maximum; LGM) conditions. RESULTS: Our results suggest an early-to-late Miocene scenario of 'out-of-Asia-Pacific' origin and progressive, dispersal-mediated diversification in Madagascar, Africa and the Neotropics, respectively. Species richness disparities amongst these four TRF lineages are best explained by a time-for-speciation (i.e. clade age) effect rather than differences in net diversification or diversity-dependent diversification due to present or past spatial-bioclimatic limits. For each well-sampled lineage (Madagascar, Africa, Neotropics), we inferred high rates of speciation and extinction over time (i.e. high species turnover), yet with the origin of most extant species falling into the Quaternary. In contrast to predictions of classical 'glacial refuge' theories, all four lineages experienced dramatic range expansions during the LGM. CONCLUSIONS: As the Madagascan, African and Neotropical lineages display constant-rate evolution since their origin (early-to-mid-Miocene), Quaternary environmental change might be a less important cause of their high species turnover than intrinsic features generally conferring rapid population turnover in tropical orchids (e.g., epiphytism, specialization on pollinators and mycorrhizal fungi, wind dispersal). Nonetheless, climate-induced range fluctuations during the Quaternary could still have played an influential role in the origination and extinction of Bulbophyllum species in those three, if not in all four TRF regions.


Assuntos
Biodiversidade , Orchidaceae/classificação , Filogenia , Floresta Úmida , Ecossistema , Extinção Biológica , Análise dos Mínimos Quadrados , Madagáscar , Filogeografia , Probabilidade , Especificidade da Espécie , Fatores de Tempo
14.
Mol Phylogenet Evol ; 130: 9-17, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30266460

RESUMO

Dipteronia (Sapindaceae) is an ancient relict woody genus, and contains just two extant species endemic to Southwestern and Central China. As sharing numerous morphological characters, Dipteronia and Acer have long been considered as sister groups forming the traditional family Aceraceae. However, molecular phylogenetics has generally not resolved the phylogenetic placement of Dipteronia, especially not in its expected position as sister to Acer. In this study, we present large-scale, phylogenomic data sets, incorporating complete chloroplast (cp) genome sequences and transcriptome data from 13 Sapindaceae species, to resolve the phylogenetic relationship between Dipteronia and Acer. Moreover, the impact of long-branch attraction (LBA) artefacts and robustness of inferred topologies are assessed by long-branch excluding and coalescent-based methods. Corroborating classical morphology-based classifications, both cp genome and nuclear datasets (2466 co-orthologous genes and 273 co-SCNGs) recover Dipteronia and Acer as mutually monophyletic groups. In addition, our fossil-calibrated molecular phylogenies date the crown of the two extant Dipteronia species to the Paleocene/Eocene boundary, implying that these morphologically highly similar taxa are amongst the oldest 'living fossils' of the East Asian Flora.


Assuntos
Genoma de Planta/genética , Filogenia , Sapindaceae/classificação , Sapindaceae/genética , China , Fósseis , Genoma de Cloroplastos/genética , Transcriptoma
15.
Mol Phylogenet Evol ; 127: 978-987, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981470

RESUMO

Species of Podophylloideae (Berberidaceae, Ranunculales) are of great pharmacogenetic importance and represent the classic biogeographic disjunction between eastern Asia (EA; 10 ssp.) and eastern North America (ENA; 2 ssp.). However, previous molecular studies of this group suffered from low phylogenetic resolution and/or insufficient marker variability. This study is the first to report whole-plastome sequence data for all 12 species of Podophylloideae (14 individuals) and a close relative, Achlys triphylla. These 15 plastomes proved highly similar in overall size (156,240-157,370 bp), structure, gene order and content, also when compared to other Ranunculales, but also revealed some structural variations caused by the expansion or contraction of the inverted repeats (IRs) into or out of adjacent single-copy regions. Our phylogenomic analysis, based on 63 plastome-derived protein-coding genes (CDS), supported the monophyly of Podophylloideae and its two major genera (EA: Dysosma, EA/ENA: Diphylleia), with Podophyllum peltatum L. (ENA) being more closely related to Diphylleia than to the group's earliest diverging species, Sinopodophyllum hexandrum (EA). Furthermore, within this subfamily/dataset, matK was identified as the fastest evolving gene, which proved to be under positive selection especially in more recently derived, lower-elevation lineages of Dysosma, possibly reflecting an adaptive response to novel environmental (i.e. subtropical compared to higher-elevation/alpine) conditions. Finally, several highly variable noncoding regions were identified in the plastomes of Podophylloideae and Ranunculales. These highly variable loci should be the best choices for future phylogenetic, phylogeographic, and population-level genetic studies. Overall, our results demonstrate the power of plastid phylogenomics to improve phylogenetic resolution, and contribute to a better understanding of plastid gene evolution in Podophylloideae.


Assuntos
Berberidaceae/genética , Evolução Molecular , Genes de Plantas , Genomas de Plastídeos , Filogenia , Plastídeos/genética , Ásia Oriental , Humanos , Repetições de Microssatélites/genética , Filogeografia , Polimorfismo Genético , Ranunculales/classificação , Sequências Repetitivas de Ácido Nucleico/genética , Seleção Genética
17.
Ann Bot ; 121(2): 241-254, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29300817

RESUMO

Background and Aims: Disentangling the relative roles of past fragmentation (vicariance), colonization (dispersal) and post-divergence gene flow in the genetic divergence of continental island organisms remains a formidable challenge. Amplified fragment length polymorphisms (AFLPs) were used to (1) gain further insights into the biogeographical processes underlying the Pleistocene diversification of the Aegean Nigella arvensis complex; (2) evaluate the role of potential key factors driving patterns of population genetic variability (mating system, geographical isolation and historical contingencies); and (3) test the robustness of conclusions previously drawn from chloroplast (cp) DNA. Methods: Genetic diversity was analysed for 235 AFLP markers from 48 populations (497 individuals) representing 11 taxa of the complex using population genetic methods and Bayesian assignment tests. Key Results: Most designated taxa are identifiable as genetically distinct units. Both fragmentation and dispersal-driven diversification processes occurred at different geological time scales, from Early to Late Pleistocene, specifically (1) sea barrier-induced vicariant speciation in the Cyclades, the Western Cretan Strait and Ikaria; and (2) bi-regional colonizations of the 'Southern Aegean Island Arc' from the Western vs. Eastern Aegean mainland, followed by allopatric divergences in Crete vs. Rhodos and Karpathos/Kasos. Outcrossing island taxa experienced drift-related demographic processes that are magnified in the two insular selfing species. Population genetic differentiation on the mainland seems largely driven by dispersal limitation, while in the Central Aegean it may still be influenced by historical events (island fragmentation and sporadic long-distance colonization). Conclusions: The biogeographical history of Aegean Nigella is more complex than expected for a strictly allopatric vicariant model of divergence. Nonetheless, the major phylogeographical boundaries of this radiation are largely congruent with the geography and history of islands, with little evidence for ongoing gene exchange between divergent taxa. The present results emphasize the need to investigate further biological and landscape features and contemporary vs. historical processes in driving population divergence and taxon diversification in Aegean plant radiations.


Assuntos
Fluxo Gênico/genética , Variação Genética/genética , Nigella/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , Genética Populacional , Ilhas , Região do Mediterrâneo , Filogeografia
18.
BMC Evol Biol ; 16: 14, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26781289

RESUMO

BACKGROUND: Species or clades may retain or shift their environmental niche space over evolutionary time. Understanding these processes offers insights into the environmental processes fuelling lineage diversification and might also provide information on past range dynamics of ecosystems. However, little is known about the relative contributions of niche conservatism versus niche divergence to species diversification in the tropics. Here, we examined broad-scale patterns of niche evolution within a Pliocene-Pleistocene clade of epiphytic Bulbophyllum orchids (30 spp.) whose collective distribution covers the northwest and eastern forest ecosystems of Madagascar. RESULTS: Using species occurrence data, ecological niche models, and multivariate analyses of contributing variables, we identified a three-state niche distribution character for the entire clade, coinciding with three major forest biomes viz. phytogeographical provinces in Madagascar: A, Northwest 'Sambirano'; B, 'Eastern Lowlands'; and C, 'Central Highlands'. A time-calibrated phylogeny and Bayesian models of niche evolution were then used to detect general trends in the direction of niche change over the clade's history (≤5.3 Ma). We found highest transitions rates between lowlands (A and B) and (mostly from B) into the highland (C), with extremely low rates out of the latter. Lowland-to-highland transitions occurred frequently during the Quaternary, suggesting that climate-induced vegetational shifts promoted niche transitions and ecological speciation at this time. CONCLUSIONS: Our results reveal that niche transitions occurred frequently and asymmetrically within this Madagascan orchid clade, and in particular over Quaternary time scales. Intrinsic features germane to Bulbophyllum (e.g., high dispersal ability, drought tolerance, multiple photosynthetic pathways) as well as extrinsic factors (ecological, historical) likely interacted to generate the niche transition patterns observed. In sum, our results support the emerging idea of dramatic environmental and climatic fluctuations in Madagascar during the recent geological past, which overturns the long-held paradigm of long-term stability in tropical forest settings. The generality of the patterns and timings reported here awaits the availability of additional comparative studies in other Madagascan endemics.


Assuntos
Orchidaceae/fisiologia , Teorema de Bayes , Evolução Biológica , Ecossistema , Madagáscar , Orchidaceae/classificação , Filogenia
19.
BMC Evol Biol ; 16: 66, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27001058

RESUMO

BACKGROUND: The evolutionary origin and historical demography of extant Arcto-Tertiary forest species in East Asia is still poorly understood. Here, we reconstructed the evolutionary and population demographic history of the two extant Euptelea species in China (E. pleiosperma) and Japan (E. polyandra). Chloroplast/nuclear DNA sequences and microsatellite loci were obtained from 36 Euptelea populations to explore molecular structure and diversity in relation to past and present distributions based on ecological niche modelling (ENM). Time-calibrated phylogenetic/phylogeographic inferences and niche-identity tests were used to infer the historical process of lineage formation. RESULTS: Euptelea pleiosperma diverged from E. polyandra around the Late Miocene and experienced significant ecological differentiation. A near-simultaneous diversification of six phylogroups occurred during the mid-to-late Pliocene, in response to the abrupt uplift of the eastern Tibetan Plateau and an increasingly cooler and drier climate. Populations of E. pleiosperma seem to have been mostly stationary through the last glacial cycles, while those of E. polyandra reflect more recent climate-induced cycles of range contraction and expansion. CONCLUSIONS: Our results illustrate how Late Neogene climatic/tectonic changes promoted speciation and lineage diversification in East Asia's Tertiary relict flora. They also demonstrate for the first time a greater variation in such species' responses to glacial cycles in Japan when compared to congeners in China.


Assuntos
Evolução Biológica , Mudança Climática , Magnoliopsida/genética , China , DNA de Cloroplastos/genética , DNA Espaçador Ribossômico/genética , Evolução Molecular , Ásia Oriental , Fósseis , Especiação Genética , Japão , Repetições de Microssatélites , Filogenia , Filogeografia
20.
BMC Evol Biol ; 15: 192, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26376901

RESUMO

BACKGROUND: The transition from outcrossing to selfing has long been portrayed as an 'evolutionary dead end' because, first, reversals are unlikely and, second, selfing lineages suffer from higher rates of extinction owing to a reduced potential for adaptation and the accumulation of deleterious mutations. We tested these two predictions in a clade of Madagascan Bulbophyllum orchids (30 spp.), including eight species where auto-pollinating morphs (i.e., selfers, without a 'rostellum') co-exist with their pollinator-dependent conspecifics (i.e., outcrossers, possessing a rostellum). Specifically, we addressed this issue on the basis of a time-calibrated phylogeny by means of ancestral character reconstructions and within the state-dependent evolution framework of BiSSE (Binary State Speciation and Extinction), which allowed jointly estimating rates of transition, speciation, and extinction between outcrossing and selfing. RESULTS: The eight species capable of selfing occurred in scattered positions across the phylogeny, with two likely originating in the Pliocene (ca. 4.4-3.1 Ma), one in the Early Pleistocene (ca. 2.4 Ma), and five since the mid-Pleistocene (ca. ≤ 1.3 Ma). We infer that this scattered phylogenetic distribution of selfing is best described by models including up to eight independent outcrossing-to-selfing transitions and very low rates of speciation (and either moderate or zero rates of extinction) associated with selfing. CONCLUSIONS: The frequent and irreversible outcrossing-to-selfing transitions in Madagascan Bulbophyllum are clearly congruent with the first prediction of the dead end hypothesis. The inability of our study to conclusively reject or support the likewise predicted higher extinction rate in selfing lineages might be explained by a combination of methodological limitations (low statistical power of our BiSSE approach to reliably estimate extinction in small-sized trees) and evolutionary processes (insufficient time elapsed for selfers to go extinct). We suggest that, in these tropical orchids, a simple genetic basis of selfing (via loss of the 'rostellum') is needed to explain the strikingly recurrent transitions to selfing, perhaps reflecting rapid response to parallel and novel selective environments over Late Quaternary (≤ 1.3 Ma) time scales.


Assuntos
Evolução Biológica , Orchidaceae/fisiologia , Polinização , Orchidaceae/classificação , Orchidaceae/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA