RESUMO
Utilizing a protein carrier in combination with isobaric labeling to "boost" the signal of other low-level samples in multiplexed analyses has emerged as an attractive strategy to enhance data quantity while minimizing protein input in mass spectrometry analyses. Recent applications of this approach include pMHC profiling and tyrosine phosphoproteomics, two applications that are often limited by large sample requirements. While including a protein carrier has been shown to increase the number of identifiable peptides in both applications, the impact of a protein carrier on quantitative accuracy remains to be thoroughly explored, particularly in relevant biological contexts where samples exhibit dynamic changes in abundance across peptides. Here, we describe two sets of analyses comparing MS2-based quantitation using a 20× protein carrier in pMHC analyses and a high (~100×) and low (~9×) protein carrier in pTyr analyses, using CDK4/6 inhibitors and EGF stimulation to drive dynamic changes in the immunopeptidome and phosphoproteome, respectively. In both applications, inclusion of a protein carrier resulted in an increased number of MHC peptide or phosphopeptide identifications, as expected. At the same time, quantitative accuracy was adversely affected by the presence of the protein carrier, altering interpretation of the underlying biological response to perturbation. Moreover, for tyrosine phosphoproteomics, the presence of high levels of protein carrier led to a large number of missing values for endogenous phosphopeptides, leading to fewer quantifiable peptides relative to the "no-boost" condition. These data highlight the unique limitations and future experimental considerations for both analysis types and provide a framework for assessing quantitative accuracy in protein carrier experiments moving forward.
Assuntos
Fosfopeptídeos/metabolismo , Tirosina/metabolismo , Linhagem Celular Tumoral , Humanos , Fosforilação , ProteômicaRESUMO
Multiple myeloma is highly dependent on the bone marrow microenvironment until progressing to very advanced extramedullary stages of the disease such as plasma cell leukemia. Stromal cells in the bone marrow secrete a variety of cytokines that promote plasma cell survival by regulating antiapoptotic members of the Bcl-2 family including Mcl-1, Bcl-xL, and Bcl-2. Although the antiapoptotic protein on which a cell depends is typically consistent among normal cells of a particular phenotype, Bcl-2 family dependence is highly heterogeneous in multiple myeloma. Although normal plasma cells and most multiple myeloma cells require Mcl-1 for survival, a subset of myeloma is codependent on Bcl-2 and/or Bcl-xL We investigated the role of the bone marrow microenvironment in determining Bcl-2 family dependence in multiple myeloma. We used the Bcl-2/Bcl-xL inhibitor ABT-737 to study the factors regulating whether myeloma is Mcl-1 dependent, and thus resistant to ABT-737-induced apoptosis, or Bcl-2/Bcl-xL codependent, and thus sensitive to ABT-737. We demonstrate that bone marrow stroma is capable of inducing Mcl-1 dependence through the production of the plasma cell survival cytokine interleukin-6 (IL-6). IL-6 upregulates Mcl-1 transcription in a STAT3-dependent manner, although this occurred in a minority of the cells tested. In all cells, IL-6 treatment results in posttranslational modification of the proapoptotic protein Bim. Phosphorylation of Bim shifts its binding from Bcl-2 and Bcl-xL to Mcl-1, an effect reversed by MEK inhibition. Blocking IL-6 or downstream signaling restored Bcl-2/Bcl-xL dependence and may therefore represent a clinically useful strategy to enhance the activity of Bcl-2 inhibitors.
Assuntos
Medula Óssea/metabolismo , Mieloma Múltiplo/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Transdução de Sinais , Microambiente Tumoral , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Compostos de Bifenilo/farmacologia , Medula Óssea/patologia , Linhagem Celular Tumoral , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Sulfonamidas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Proteína bcl-X/genética , Proteína bcl-X/metabolismoRESUMO
Phosphorylation of connexin 43 (Cx43) is an important regulatory mechanism of gap junction (GJ) function. Cx43 is modified by several kinases on over 15 sites within its â¼140 amino acid-long C-terminus (CT). Phosphorylation of Cx43CT on S255, S262, S279, and S282 by ERK has been widely documented in several cell lines, by many investigators. Phosphorylation of these sites by JNK and p38, on the other hand, is not well-established. Indeed, ERK is a kinase activated by growth factors and is upregulated in diseases, such as cancer. JNK and p38, however, have a largely tumor-suppressive function due to their stress-activated and apoptotic role. We investigated substrate specificity of all three MAPKs toward Cx43CT, both in vitro and in two cell lines (MDCK - non-cancerous, epithelial cells and porcine PAECs - pulmonary artery endothelial cells). Cx43 phosphorylation was monitored through gel-shift assays on an SDS-PAGE, immunodetection with phospho-Cx43 antibodies, and LC-MS/MS phosphoproteomic analyses. Our results demonstrate that p38 and JNK specificity differ from each other and from ERK. JNK has a strong preference for S255 and S279, while p38 readily phosphorylates S279 and S282. In addition, while we confirmed that ERK can phosphorylate all four serines (255, 262, 279, and 282), we identified T290 as a novel ERK phosphorylation site. This work underscores the importance of delineating the effects of ERK, JNK, and p38 signaling pathways on Cx43 and GJ function.
RESUMO
Background: Although the epidermal growth factor receptor (EGFR) is a frequent oncogenic driver in glioblastoma (GBM), efforts to therapeutically target this protein have been largely unsuccessful. The present preclinical study evaluated the novel EGFR inhibitor WSD-0922. Methods: We employed flank and orthotopic patient-derived xenograft models to characterize WSD-0922 and compare its efficacy to erlotinib, a potent EGFR inhibitor that failed to provide benefit for GBM patients. We performed long-term survival studies and collected short-term tumor, plasma, and whole-brain samples from mice treated with each drug. We utilized mass spectrometry to measure drug concentrations and spatial distribution and to assess the impact of each drug on receptor activity and cellular signaling networks. Results: WSD-0922 inhibited EGFR signaling as effectively as erlotinib in in vitro and in vivo models. While WSD-0922 was more CNS penetrant than erlotinib in terms of total concentration, comparable concentrations of both drugs were measured at the tumor site in orthotopic models, and the concentration of free WSD-0922 in the brain was significantly less than the concentration of free erlotinib. WSD-0922 treatment provided a clear survival advantage compared to erlotinib in the GBM39 model, with marked suppression of tumor growth and most mice surviving until the end of the study. WSD-0922 treatment preferentially inhibited phosphorylation of several proteins, including those associated with EGFR inhibitor resistance and cell metabolism. Conclusions: WSD-0922 is a highly potent inhibitor of EGFR in GBM, and warrants further evaluation in clinical studies.
RESUMO
BACKGROUND: Antibody drug conjugates (ADCs) targeting the epidermal growth factor receptor (EGFR), such as depatuxizumab mafodotin (Depatux-M), is a promising therapeutic strategy for glioblastoma (GBM) but recent clinical trials did not demonstrate a survival benefit. Understanding the mechanisms of failure for this promising strategy is critically important. METHODS: PDX models were employed to study efficacy of systemic vs intracranial delivery of Depatux-M. Immunofluorescence and MALDI-MSI were performed to detect drug levels in the brain. EGFR levels and compensatory pathways were studied using quantitative flow cytometry, Western blots, RNAseq, FISH, and phosphoproteomics. RESULTS: Systemic delivery of Depatux-M was highly effective in nine of 10 EGFR-amplified heterotopic PDXs with survival extending beyond one year in eight PDXs. Acquired resistance in two PDXs (GBM12 and GBM46) was driven by suppression of EGFR expression or emergence of a novel short-variant of EGFR lacking the epitope for the Depatux-M antibody. In contrast to the profound benefit observed in heterotopic tumors, only two of seven intrinsically sensitive PDXs were responsive to Depatux-M as intracranial tumors. Poor efficacy in orthotopic PDXs was associated with limited and heterogeneous distribution of Depatux-M into tumor tissues, and artificial disruption of the BBB or bypass of the BBB by direct intracranial injection of Depatux-M into orthotopic tumors markedly enhanced the efficacy of drug treatment. CONCLUSIONS: Despite profound intrinsic sensitivity to Depatux-M, limited drug delivery into brain tumor may have been a key contributor to lack of efficacy in recently failed clinical trials.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Imunoconjugados , Preparações Farmacêuticas , Anticorpos Monoclonais Humanizados , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/tratamento farmacológico , HumanosRESUMO
Engineered allosteric regulation of protein activity provides significant advantages for the development of robust and broadly applicable tools. However, the application of allosteric switches in optogenetics has been scarce and suffers from critical limitations. Here, we report an optogenetic approach that utilizes an engineered Light-Regulated (LightR) allosteric switch module to achieve tight spatiotemporal control of enzymatic activity. Using the tyrosine kinase Src as a model, we demonstrate efficient regulation of the kinase and identify temporally distinct signaling responses ranging from seconds to minutes. LightR-Src off-kinetics can be tuned by modulating the LightR photoconversion cycle. A fast cycling variant enables the stimulation of transient pulses and local regulation of activity in a selected region of a cell. The design of the LightR module ensures broad applicability of the tool, as we demonstrate by achieving light-mediated regulation of Abl and bRaf kinases as well as Cre recombinase.
Cells need to sense and respond to their environment. To do this, they have dedicated proteins that interpret outside signals and convert them into appropriate responses that are only active at a specific time and location within the cell. However, in many diseases, including cancer, these signaling proteins are switched on for too long or are active in the wrong place. To better understand why this is the case, researchers manipulate proteins to identify the processes they regulate. One way to do this is to engineer proteins so that they can be controlled by light, turning them either on or off. Ideally, a light-controlled tool can activate proteins at defined times, control proteins in specific locations within the cell and regulate any protein of interest. However, current methods do not combine all of these requirements in one tool, and scientists often have to use different methods, depending on the topic they are researching. Now, Shaaya et al. set out to develop a single tool that combines all required features. The researchers engineered a light-sensitive 'switch' that allowed them to activate a specific protein by illuminating it with blue light and to deactivate it by turning the light off. Unlike other methods, the new tool uses a light-sensitive switch that works like a clamp. In the dark, the clamp is open, which 'stretches' and distorts the protein, rendering it inactive. In light, however, the clamp closes and the structure of the protein and its activity are restored. Moreover, it can activate proteins multiple times, control proteins in specific locations within the cell and it can be applied to a variety of proteins. This specific design makes it possible to combine multiple features in one tool that will both simplify and broaden its use to investigate specific proteins and signaling pathways in a broad range of diseases.
Assuntos
Optogenética/métodos , Quinases da Família src/química , Regulação Alostérica , Enzimas/química , LuzRESUMO
Mcl-1 is a highly labile protein, subject to extensive post-translational regulation. This distinguishes Mcl-1 from other antiapoptotic proteins and necessitates further study to better understand how interactions with proapoptotic Bcl-2 proteins affect its regulation. One such protein, Bim, is known to stabilize Mcl-1, and Bim phosphorylation has been associated with increased Mcl-1 binding. Consequently, we investigated the potential impact of Bim phosphorylation on Mcl-1 stability. We found that Bim stabilizes and primes Mcl-1 in RPCI-WM1 cells and is constitutively phosphorylated. Additionally, introduction of several phospho-mimetic and unphosphosphorylateable Bim mutations resulted in altered Mcl-1 stability and distinct Bim binding to antiapoptotic proteins. These findings suggest Bim phosphorylation not only regulates Mcl-1 stability but also is a potential mechanism for enforcing Mcl-1 dependence.