Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lancet Oncol ; 22(6): 765-778, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33930323

RESUMO

BACKGROUND: The efficacy and safety profiles of vaccines against SARS-CoV-2 in patients with cancer is unknown. We aimed to assess the safety and immunogenicity of the BNT162b2 (Pfizer-BioNTech) vaccine in patients with cancer. METHODS: For this prospective observational study, we recruited patients with cancer and healthy controls (mostly health-care workers) from three London hospitals between Dec 8, 2020, and Feb 18, 2021. Participants who were vaccinated between Dec 8 and Dec 29, 2020, received two 30 µg doses of BNT162b2 administered intramuscularly 21 days apart; patients vaccinated after this date received only one 30 µg dose with a planned follow-up boost at 12 weeks. Blood samples were taken before vaccination and at 3 weeks and 5 weeks after the first vaccination. Where possible, serial nasopharyngeal real-time RT-PCR (rRT-PCR) swab tests were done every 10 days or in cases of symptomatic COVID-19. The coprimary endpoints were seroconversion to SARS-CoV-2 spike (S) protein in patients with cancer following the first vaccination with the BNT162b2 vaccine and the effect of vaccine boosting after 21 days on seroconversion. All participants with available data were included in the safety and immunogenicity analyses. Ongoing follow-up is underway for further blood sampling after the delayed (12-week) vaccine boost. This study is registered with the NHS Health Research Authority and Health and Care Research Wales (REC ID 20/HRA/2031). FINDINGS: 151 patients with cancer (95 patients with solid cancer and 56 patients with haematological cancer) and 54 healthy controls were enrolled. For this interim data analysis of the safety and immunogenicity of vaccinated patients with cancer, samples and data obtained up to March 19, 2021, were analysed. After exclusion of 17 patients who had been exposed to SARS-CoV-2 (detected by either antibody seroconversion or a positive rRT-PCR COVID-19 swab test) from the immunogenicity analysis, the proportion of positive anti-S IgG titres at approximately 21 days following a single vaccine inoculum across the three cohorts were 32 (94%; 95% CI 81-98) of 34 healthy controls; 21 (38%; 26-51) of 56 patients with solid cancer, and eight (18%; 10-32) of 44 patients with haematological cancer. 16 healthy controls, 25 patients with solid cancer, and six patients with haematological cancer received a second dose on day 21. Of the patients with available blood samples 2 weeks following a 21-day vaccine boost, and excluding 17 participants with evidence of previous natural SARS-CoV-2 exposure, 18 (95%; 95% CI 75-99) of 19 patients with solid cancer, 12 (100%; 76-100) of 12 healthy controls, and three (60%; 23-88) of five patients with haematological cancers were seropositive, compared with ten (30%; 17-47) of 33, 18 (86%; 65-95) of 21, and four (11%; 4-25) of 36, respectively, who did not receive a boost. The vaccine was well tolerated; no toxicities were reported in 75 (54%) of 140 patients with cancer following the first dose of BNT162b2, and in 22 (71%) of 31 patients with cancer following the second dose. Similarly, no toxicities were reported in 15 (38%) of 40 healthy controls after the first dose and in five (31%) of 16 after the second dose. Injection-site pain within 7 days following the first dose was the most commonly reported local reaction (23 [35%] of 65 patients with cancer; 12 [48%] of 25 healthy controls). No vaccine-related deaths were reported. INTERPRETATION: In patients with cancer, one dose of the BNT162b2 vaccine yields poor efficacy. Immunogenicity increased significantly in patients with solid cancer within 2 weeks of a vaccine boost at day 21 after the first dose. These data support prioritisation of patients with cancer for an early (day 21) second dose of the BNT162b2 vaccine. FUNDING: King's College London, Cancer Research UK, Wellcome Trust, Rosetrees Trust, and Francis Crick Institute.


Assuntos
Vacinas contra COVID-19/uso terapêutico , COVID-19/imunologia , Neoplasias/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Vacina BNT162 , COVID-19/sangue , COVID-19/complicações , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Relação Dose-Resposta Imunológica , Feminino , Humanos , Imunogenicidade da Vacina/imunologia , Londres/epidemiologia , Masculino , Pessoa de Meia-Idade , Neoplasias/sangue , Neoplasias/complicações , Neoplasias/virologia , Estudos Prospectivos , SARS-CoV-2 , País de Gales
2.
Sci Adv ; 9(49): eadj6174, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38055824

RESUMO

Clonotypic αß T cell responses to cargoes presented by major histocompatibility complex (MHC), MR1, or CD1 proteins underpin adaptive immunity. Those responses are mostly mediated by complementarity-determining region 3 motifs created by quasi-random T cell receptor (TCR) gene rearrangements, with diversity being highest for TCRγδ. Nonetheless, TCRγδ also displays nonclonotypic innate responsiveness following engagement of germline-encoded Vγ-specific residues by butyrophilin (BTN) or BTN-like (BTNL) proteins that uniquely mediate γδ T cell subset selection. We now report that nonclonotypic TCR engagement likewise induces distinct phenotypes in TCRαß+ cells. Specifically, antibodies to germline-encoded human TCRVß motifs consistently activated naïve or memory T cells toward core states distinct from those induced by anti-CD3 or superantigens and from others commonly reported. Those states combined selective proliferation and effector function with activation-induced inhibitory receptors and memory differentiation. Thus, nonclonotypic TCRVß targeting broadens our perspectives on human T cell response modes and might offer ways to induce clinically beneficial phenotypes in defined T cell subsets.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Subpopulações de Linfócitos T , Butirofilinas/genética , Butirofilinas/metabolismo , Fenótipo , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA