Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 569(7754): 59-65, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043729

RESUMO

Although anthropogenic climate change is expected to have caused large shifts in temperature and rainfall, the detection of human influence on global drought has been complicated by large internal variability and the brevity of observational records. Here we address these challenges using reconstructions of the Palmer drought severity index obtained with data from tree rings that span the past millennium. We show that three distinct periods are identifiable in climate models, observations and reconstructions during the twentieth century. In recent decades (1981 to present), the signal of greenhouse gas forcing is present but not yet detectable at high confidence. Observations and reconstructions differ significantly from an expected pattern of greenhouse gas forcing around mid-century (1950-1975), coinciding with a global increase in aerosol forcing. In the first half of the century (1900-1949), however, a signal of greenhouse-gas-forced change is robustly detectable. Multiple observational datasets and reconstructions using data from tree rings confirm that human activities were probably affecting the worldwide risk of droughts as early as the beginning of the twentieth century.


Assuntos
Mudança Climática/estatística & dados numéricos , Secas/estatística & dados numéricos , Atividades Humanas , Água/análise , Aerossóis , História do Século XX , História do Século XXI , Hidrologia , Modelos Teóricos , Plantas/metabolismo , Análise de Componente Principal , Água/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(10)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35193939

RESUMO

Streamflow often increases after fire, but the persistence of this effect and its importance to present and future regional water resources are unclear. This paper addresses these knowledge gaps for the western United States (WUS), where annual forest fire area increased by more than 1,100% during 1984 to 2020. Among 72 forested basins across the WUS that burned between 1984 and 2019, the multibasin mean streamflow was significantly elevated by 0.19 SDs (P < 0.01) for an average of 6 water years postfire, compared to the range of results expected from climate alone. Significance is assessed by comparing prefire and postfire streamflow responses to climate and also to streamflow among 107 control basins that experienced little to no wildfire during the study period. The streamflow response scales with fire extent: among the 29 basins where >20% of forest area burned in a year, streamflow over the first 6 water years postfire increased by a multibasin average of 0.38 SDs, or 30%. Postfire streamflow increases were significant in all four seasons. Historical fire-climate relationships combined with climate model projections suggest that 2021 to 2050 will see repeated years when climate is more fire-conducive than in 2020, the year currently holding the modern record for WUS forest area burned. These findings center on relatively small, minimally managed basins, but our results suggest that burned areas will grow enough over the next 3 decades to enhance streamflow at regional scales. Wildfire is an emerging driver of runoff change that will increasingly alter climate impacts on water supplies and runoff-related risks.


Assuntos
Mudança Climática , Florestas , Estações do Ano , Abastecimento de Água , Incêndios Florestais , Estados Unidos
3.
Proc Natl Acad Sci U S A ; 117(6): 2864-2869, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31988113

RESUMO

Agrobiodiversity-the variation within agricultural plants, animals, and practices-is often suggested as a way to mitigate the negative impacts of climate change on crops [S. A. Wood et al., Trends Ecol. Evol. 30, 531-539 (2015)]. Recently, increasing research and attention has focused on exploiting the intraspecific genetic variation within a crop [Hajjar et al., Agric. Ecosyst. Environ. 123, 261-270 (2008)], despite few relevant tests of how this diversity modifies agricultural forecasts. Here, we quantify how intraspecific diversity, via cultivars, changes global projections of growing areas. We focus on a crop that spans diverse climates, has the necessary records, and is clearly impacted by climate change: winegrapes (predominantly Vitis vinifera subspecies vinifera). We draw on long-term French records to extrapolate globally for 11 cultivars (varieties) with high diversity in a key trait for climate change adaptation-phenology. We compared scenarios where growers shift to more climatically suitable cultivars as the climate warms or do not change cultivars. We find that cultivar diversity more than halved projected losses of current winegrowing areas under a 2 °C warming scenario, decreasing areas lost from 56 to 24%. These benefits are more muted at higher warming scenarios, reducing areas lost by a third at 4 °C (85% versus 58%). Our results support the potential of in situ shifting of cultivars to adapt agriculture to climate change-including in major winegrowing regions-as long as efforts to avoid higher warming scenarios are successful.


Assuntos
Mudança Climática , Vitis/crescimento & desenvolvimento , Adaptação Fisiológica , Biodiversidade , Estações do Ano , Vitis/fisiologia
4.
Proc Natl Acad Sci U S A ; 116(38): 18848-18853, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31481606

RESUMO

Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced terrestrial carbon uptake. Here, we empirically demonstrate that strong negative coupling between soil moisture and vapor pressure deficit occurs globally, indicating high probability of cooccurring soil drought and atmospheric aridity. Using the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we further show that concurrent soil drought and atmospheric aridity are greatly exacerbated by land-atmosphere feedbacks. The feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. In addition, the soil moisture-precipitation feedback acts to amplify precipitation and soil moisture deficits in most regions. CMIP5 models further show that the frequency of concurrent soil drought and atmospheric aridity enhanced by land-atmosphere feedbacks is projected to increase in the 21st century. Importantly, land-atmosphere feedbacks will greatly increase the intensity of both soil drought and atmospheric aridity beyond that expected from changes in mean climate alone.


Assuntos
Atmosfera/química , Solo/química , Tempo (Meteorologia) , Mudança Climática , Secas , Retroalimentação , Mapeamento Geográfico , Umidade , Modelos Teóricos
5.
New Phytol ; 229(1): 323-334, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32767753

RESUMO

Temperate forests are shaped by late spring freezes after budburst - false springs - which may shift with climate change. Research to date has generated conflicting results, potentially because few studies focus on the multiple underlying drivers of false spring risk. Here, we assessed the effects of mean spring temperature, distance from the coast, elevation and the North Atlantic Oscillation (NAO) using PEP725 leafout data for six tree species across 11 648 sites in Europe, to determine which were the strongest predictors of false spring risk and how these predictors shifted with climate change. All predictors influenced false spring risk before recent warming, but their effects have shifted in both magnitude and direction with warming. These shifts have potentially magnified the variation in false spring risk among species with an increase in risk for early-leafout species (i.e. Aesculus hippocastanum, Alnus glutinosa, Betula pendula) compared with a decline or no change in risk among late-leafout species (i.e. Fagus sylvatica, Fraxinus excelsior, Quercus robur). Our results show how climate change has reshaped the drivers of false spring risk, complicating forecasts of future false springs, and potentially reshaping plant community dynamics given uneven shifts in risk across species.


Assuntos
Fagus , Árvores , Mudança Climática , Europa (Continente) , Estações do Ano , Temperatura
6.
Proc Natl Acad Sci U S A ; 115(16): 4093-4098, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610293

RESUMO

Predicting how increasing atmospheric CO2 will affect the hydrologic cycle is of utmost importance for a range of applications ranging from ecological services to human life and activities. A typical perspective is that hydrologic change is driven by precipitation and radiation changes due to climate change, and that the land surface will adjust. Using Earth system models with decoupled surface (vegetation physiology) and atmospheric (radiative) CO2 responses, we here show that the CO2 physiological response has a dominant role in evapotranspiration and evaporative fraction changes and has a major effect on long-term runoff compared with radiative or precipitation changes due to increased atmospheric CO2 This major effect is true for most hydrological stress variables over the largest fraction of the globe, except for soil moisture, which exhibits a more nonlinear response. This highlights the key role of vegetation in controlling future terrestrial hydrologic response and emphasizes that the carbon and water cycles are intimately coupled over land.


Assuntos
Atmosfera , Ciclo do Carbono , Dióxido de Carbono/farmacologia , Mudança Climática , Folhas de Planta/efeitos dos fármacos , Fenômenos Fisiológicos Vegetais/efeitos dos fármacos , Ciclo Hidrológico , Biomassa , Carbono/metabolismo , Secas , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Fenômenos Fisiológicos Vegetais/efeitos da radiação , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Luz Solar , Água/metabolismo
7.
Glob Chang Biol ; 25(7): 2209-2220, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30953573

RESUMO

Temperate plants are at risk of being exposed to late spring freezes. These freeze events-often called false springs-are one of the strongest factors determining temperate plants species range limits and can impose high ecological and economic damage. As climate change may alter the prevalence and severity of false springs, our ability to forecast such events has become more critical, and it has led to a growing body of research. Many false spring studies largely simplify the myriad complexities involved in assessing false spring risks and damage. While these studies have helped advance the field and may provide useful estimates at large scales, studies at the individual to community levels must integrate more complexity for accurate predictions of plant damage from late spring freezes. Here, we review current metrics of false spring, and how, when, and where plants are most at risk of freeze damage. We highlight how life stage, functional group, species differences in morphology and phenology, and regional climatic differences contribute to the damage potential of false springs. More studies aimed at understanding relationships among species tolerance and avoidance strategies, climatic regimes, and the environmental cues that underlie spring phenology would improve predictions at all biological levels. An integrated approach to assessing past and future spring freeze damage would provide novel insights into fundamental plant biology and offer more robust predictions as climate change progresses, which are essential for mitigating the adverse ecological and economic effects of false springs.


Assuntos
Mudança Climática , Plantas , Congelamento , Estações do Ano
8.
Geophys Res Lett ; 46(21): 12417-12426, 2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32747843

RESUMO

Hydroclimate extremes in North America, Europe, and the Mediterranean are linked to ocean and atmospheric circulation anomalies in the Atlantic, but the limited length of the instrumental record prevents complete identification and characterization of these patterns of covariability especially at decadal to centennial timescales. Here we analyze the coupled patterns of drought variability on either side of the North Atlantic Ocean basin using independent climate field reconstructions spanning the last millennium in order to detect and attribute epochs of coherent basin-wide moisture anomalies to ocean and atmosphere processes. A leading mode of broad-scale moisture variability is characterized by distinct patterns of North Atlantic atmosphere circulation and sea surface temperatures. We infer a negative phase of the North Atlantic Oscillation and colder Atlantic sea surface temperatures in the middle of the 15th century, coincident with weaker solar irradiance and prior to strong volcanic forcing associated with the early Little Ice Age.

9.
Geophys Res Lett ; 45(19): 10619-10626, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30546165

RESUMO

The Caribbean islands are expected to see more frequent and severe droughts from reduced precipitation and increased evaporative demand due to anthropogenic climate change. Between 2013 and 2016, the Caribbean experienced a widespread drought due in part to El Niño in 2015-2016, but it is unknown whether its severity was exacerbated by anthropogenic warming. This work examines the role of recent warming on this drought, using a recently developed high-resolution self-calibrating Palmer Drought Severity Index data set. The resulting analysis suggest that anthropogenic warming accounted for ~15-17% of the drought's severity and ~7% of its spatial extent. These findings strongly suggest that climate model projected anthropogenic drying in the Caribbean is already underway, with major implications for the more than 43 million people currently living in this region.

10.
Water Resour Res ; 54(8): 5687-5701, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30713359

RESUMO

Our understanding of the full range of natural variability in streamflow, including how modern flow compares to the past, is poorly understood for the Upper Indus Basin (UIB) because of short instrumental gauge records. To help address this challenge, we use Hierarchical Bayesian Regression (HBR) with partial pooling to develop six centuries long (1394-2008 C.E.) streamflow reconstructions at three UIB gauges (Doyian, Gilgit, and Kachora), concurrently demonstrating that HBR can be used to reconstruct short records with interspersed missing data. At one gauge (Partab Bridge), with a longer instrumental record (47 years), we develop reconstructions using both Bayesian Regression (BR) and the more conventionally used Principal Components Regression (PCR). The reconstructions produced by PCR and BR at Partab Bridge are nearly identical and yield comparable reconstruction skill statistics, highlighting that the resulting tree-ring reconstruction of streamflow is not dependent on the choice of statistical method. Reconstructions at all four reconstructions indicate flow levels in the 1990s were higher than mean flow for the past six centuries. While streamflow appears most sensitive to accumulated winter (January-March) precipitation and summer (MJJAS) temperature, with warm summers contributing to high flow through increased melt of snow and glaciers, shifts in winter precipitation and summer temperatures cannot explain the anomalously high flow during the 1990s. Regardless, the sensitivity of streamflow to summer temperatures suggests that projected warming may increase streamflow in coming decades, though long-term water risk will additionally depend on changes in snowfall and glacial mass balance.

11.
Proc Natl Acad Sci U S A ; 109(23): 9000-5, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22615406

RESUMO

Analyses of datasets throughout the temperate midlatitude regions show a widespread tendency for species to advance their springtime phenology, consistent with warming trends over the past 20-50 y. Within these general trends toward earlier spring, however, are species that either have insignificant trends or have delayed their timing. Various explanations have been offered to explain this apparent nonresponsiveness to warming, including the influence of other abiotic cues (e.g., photoperiod) or reductions in fall/winter chilling (vernalization). Few studies, however, have explicitly attributed the historical trends of nonresponding species to any specific factor. Here, we analyzed long-term data on phenology and seasonal temperatures from 490 species on two continents and demonstrate that (i) apparent nonresponders are indeed responding to warming, but their responses to fall/winter and spring warming are opposite in sign and of similar magnitude; (ii) observed trends in first flowering date depend strongly on the magnitude of a given species' response to fall/winter vs. spring warming; and (iii) inclusion of fall/winter temperature cues strongly improves hindcast model predictions of long-term flowering trends compared with models with spring warming only. With a few notable exceptions, climate change research has focused on the overall mean trend toward phenological advance, minimizing discussion of apparently nonresponding species. Our results illuminate an understudied source of complexity in wild species responses and support the need for models incorporating diverse environmental cues to improve predictability of community level responses to anthropogenic climate change.


Assuntos
Aclimatação/fisiologia , Mudança Climática , Modelos Biológicos , Fenômenos Fisiológicos Vegetais/fisiologia , Estações do Ano , District of Columbia , Inglaterra , Flores/fisiologia , Especificidade da Espécie , Temperatura , Fatores de Tempo
12.
New Phytol ; 201(4): 1156-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24649487

RESUMO

Climate change has brought renewed interest in the study of plant phenology - the timing of life history events. Data on shifting phenologies with warming have accumulated rapidly, yet research has been comparatively slow to explain the diversity of phenological responses observed across latitudes, growing seasons and species. Here, we outline recent efforts to synthesize perspectives on plant phenology across the fields of ecology, climate science and evolution. We highlight three major axes that vary among these disciplines: relative focus on abiotic versus biotic drivers of phenology, on plastic versus genetic drivers of intraspecific variation, and on cross-species versus autecological approaches. Recent interdisciplinary efforts, building on data covering diverse species and climate space, have found a greater role of temperature in controlling phenology at higher latitudes and for early-flowering species in temperate systems. These efforts have also made progress in understanding the tremendous diversity of responses across species by incorporating evolutionary relatedness, and linking phenological flexibility to invasions and plant performance. Future research with a focus on data collection in areas outside the temperate mid-latitudes and across species' ranges, alongside better integration of how risk and investment shape plant phenology, offers promise for further progress.


Assuntos
Biodiversidade , Estudos Interdisciplinares , Plantas/metabolismo , Mudança Climática , Especificidade da Espécie , Fatores de Tempo
13.
Sci Adv ; 10(4): eadj4289, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38266096

RESUMO

Across western North America (WNA), 20th-21st century anthropogenic warming has increased the prevalence and severity of concurrent drought and heat events, also termed hot droughts. However, the lack of independent spatial reconstructions of both soil moisture and temperature limits the potential to identify these events in the past and to place them in a long-term context. We develop the Western North American Temperature Atlas (WNATA), a data-independent 0.5° gridded reconstruction of summer maximum temperatures back to the 16th century. Our evaluation of the WNATA with existing hydroclimate reconstructions reveals an increasing association between maximum temperature and drought severity in recent decades, relative to the past five centuries. The synthesis of these paleo-reconstructions indicates that the amplification of the modern WNA megadrought by increased temperatures and the frequency and spatial extent of compound hot and dry conditions in the 21st century are likely unprecedented since at least the 16th century.

14.
Am J Bot ; 100(7): 1407-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23797366

RESUMO

PREMISE OF THE STUDY: The study of how phenology may contribute to the assembly of plant communities has a long history in ecology. Climate change has brought renewed interest in this area, with many studies examining how phenology may contribute to the success of exotic species. In particular, there is increasing evidence that exotic species occupy unique phenological niches and track climate change more closely than native species. METHODS: Here, we use long-term records of species' first flowering dates from fi ve northern hemisphere temperate sites (Chinnor, UK and in the United States, Concord, Massachusetts; Fargo, North Dakota; Konza Prairie, Kansas; and Washington,D.C.) to examine whether invaders have distinct phenologies. Using a broad phylogenetic framework, we tested for differences between exotic and native species in mean annual flowering time, phenological changes in response to temperature and precipitation,and longer-term shifts in first flowering dates during recent pronounced climate change ("flowering time shifts"). KEY RESULTS: Across North American sites, exotic species have shifted flowering with climate change while native species, on average, have not. In the three mesic systems, exotic species exhibited higher tracking of interannual variation in temperature,such that flowering advances more with warming, than native species. Across the two grassland systems, however, exotic species differed from native species primarily in responses to precipitation and soil moisture, not temperature. CONCLUSIONS: Our findings provide cross-site support for the role of phenology and climate change in explaining species' invasions.Further, they support recent evidence that exotic species may be important drivers of extended growing seasons observed with climate change in North America.


Assuntos
Mudança Climática , Espécies Introduzidas , Fenômenos Fisiológicos Vegetais , Plantas/classificação , Plantas/genética , Temperatura , Demografia , Filogenia , Especificidade da Espécie , Fatores de Tempo , Reino Unido , Estados Unidos
15.
Am J Bot ; 100(7): 1381-97, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23752756

RESUMO

PREMISE OF THE STUDY: Numerous long-term studies in seasonal habitats have tracked interannual variation in first flowering date (FFD) in relation to climate, documenting the effect of warming on the FFD of many species. Despite these efforts, long-term phenological observations are still lacking for many species. If we could forecast responses based on taxonomic affinity, however, then we could leverage existing data to predict the climate-related phenological shifts of many taxa not yet studied. METHODS: We examined phenological time series of 1226 species occurrences (1031 unique species in 119 families) across seven sites in North America and England to determine whether family membership (or family mean FFD) predicts the sensitivity of FFD to standardized interannual changes in temperature and precipitation during seasonal periods before flowering and whether families differ significantly in the direction of their phenological shifts. KEY RESULTS: Patterns observed among species within and across sites are mirrored among family means across sites; early-flowering families advance their FFD in response to warming more than late-flowering families. By contrast, we found no consistent relationships among taxa between mean FFD and sensitivity to precipitation as measured here. CONCLUSIONS: Family membership can be used to identify taxa of high and low sensitivity to temperature within the seasonal, temperate zone plant communities analyzed here. The high sensitivity of early-flowering families (and the absence of early-flowering families not sensitive to temperature) may reflect plasticity in flowering time, which may be adaptive in environments where early-season conditions are highly variable among years.


Assuntos
Mudança Climática , Flores/fisiologia , Magnoliopsida/classificação , Fenômenos Fisiológicos Vegetais , Especificidade da Espécie , Temperatura , Fatores de Tempo
16.
Proc Natl Acad Sci U S A ; 106(13): 4997-5001, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19289836

RESUMO

The "Dust Bowl" drought of the 1930s was highly unusual for North America, deviating from the typical pattern forced by "La Nina" with the maximum drying in the central and northern Plains, warm temperature anomalies across almost the entire continent, and widespread dust storms. General circulation models (GCMs), forced by sea surface temperatures (SSTs) from the 1930s, produce a drought, but one that is centered in southwestern North America and without the warming centered in the middle of the continent. Here, we show that the inclusion of forcing from human land degradation during the period, in addition to the anomalous SSTs, is necessary to reproduce the anomalous features of the Dust Bowl drought. The degradation over the Great Plains is represented in the GCM as a reduction in vegetation cover and the addition of a soil dust aerosol source, both consequences of crop failure. As a result of land surface feedbacks, the simulation of the drought is much improved when the new dust aerosol and vegetation boundary conditions are included. Vegetation reductions explain the high temperature anomaly over the northern U.S., and the dust aerosols intensify the drought and move it northward of the purely ocean-forced drought pattern. When both factors are included in the model simulations, the precipitation and temperature anomalies are of similar magnitude and in a similar location compared with the observations. Human-induced land degradation is likely to have not only contributed to the dust storms of the 1930s but also amplified the drought, and these together turned a modest SST-forced drought into one of the worst environmental disasters the U.S. has experienced.


Assuntos
Agricultura , Simulação por Computador , Desastres , Secas , Poeira , Agricultura/tendências , Desastres/história , Secas/história , Meio Ambiente , História do Século XX , Humanos , América do Norte
17.
Trends Ecol Evol ; 37(8): 683-693, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35680467

RESUMO

Earth's most speciose biomes are in the tropics, yet tropical plant phenology remains poorly understood. Tropical phenological data are comparatively scarce and viewed through the lens of a 'temperate phenological paradigm' expecting phenological traits to respond to strong, predictably annual shifts in climate (e.g., between subfreezing and frost-free periods). Digitized herbarium data greatly expand existing phenological data for tropical plants; and circular data, statistics, and models are more appropriate for analyzing tropical (and temperate) phenological datasets. Phylogenetic information, which remains seldom applied in phenological investigations, provides new insights into phenological responses of large groups of related species to climate. Consistent combined use of herbarium data, circular statistical distributions, and robust phylogenies will rapidly advance our understanding of tropical - and temperate - phenology.


Assuntos
Mudança Climática , Flores , Clima , Filogenia , Plantas/genética , Estações do Ano , Temperatura
18.
J Geophys Res Atmos ; 126(5): e2020JD034108, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-34513547

RESUMO

Biophysical vegetation responses to elevated atmospheric carbon dioxide (CO2) affect regional hydroclimate through two competing mechanisms. Higher CO2 increases leaf area (LAI), thereby increasing transpiration and water losses. Simultaneously, elevated CO2 reduces stomatal conductance and transpiration, thereby increasing rootzone soil moisture. Which mechanism dominates in the future is highly uncertain, partly because these two processes are difficult to explicitly separate within dynamic vegetation models. We address this challenge by using the GISS ModelE global climate model to conduct a novel set of idealized 2×CO2 sensitivity experiments to: evaluate the total vegetation biophysical contribution to regional climate change under high CO2; and quantify the separate contributions of enhanced LAI and reduced stomatal conductance to regional hydroclimate responses. We find that increased LAI exacerbates soil moisture deficits across the sub-tropics and more water-limited regions, but also attenuates warming by ∼0.5-1°C in the US Southwest, Central Asia, Southeast Asia, and northern South America. Reduced stomatal conductance effects contribute ∼1°C of summertime warming. For some regions, enhanced LAI and reduced stomatal conductance produce nonlinear and either competing or mutually amplifying hydroclimate responses. In northeastern Australia, these effects combine to exacerbate radiation-forced warming and contribute to year-round water limitation. Conversely, at higher latitudes these combined effects result in less warming than would otherwise be predicted due to nonlinear responses. These results highlight substantial regional variation in CO2-driven vegetation responses and the importance of improving model representations of these processes to better quantify regional hydroclimate impacts.

19.
Science ; 368(6488): 314-318, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32299953

RESUMO

Severe and persistent 21st-century drought in southwestern North America (SWNA) motivates comparisons to medieval megadroughts and questions about the role of anthropogenic climate change. We use hydrological modeling and new 1200-year tree-ring reconstructions of summer soil moisture to demonstrate that the 2000-2018 SWNA drought was the second driest 19-year period since 800 CE, exceeded only by a late-1500s megadrought. The megadrought-like trajectory of 2000-2018 soil moisture was driven by natural variability superimposed on drying due to anthropogenic warming. Anthropogenic trends in temperature, relative humidity, and precipitation estimated from 31 climate models account for 47% (model interquartiles of 35 to 105%) of the 2000-2018 drought severity, pushing an otherwise moderate drought onto a trajectory comparable to the worst SWNA megadroughts since 800 CE.


Assuntos
Secas , Aquecimento Global , Atividades Humanas/tendências , Secas/história , Aquecimento Global/história , História do Século XXI , História Medieval , Atividades Humanas/história , Hidrologia , Modelos Teóricos , América do Norte , Solo
20.
Nat Commun ; 11(1): 6017, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243991

RESUMO

The lower Brahmaputra River in Bangladesh and Northeast India often floods during the monsoon season, with catastrophic consequences for people throughout the region. While most climate models predict an intensified monsoon and increase in flood risk with warming, robust baseline estimates of natural climate variability in the basin are limited by the short observational record. Here we use a new seven-century (1309-2004 C.E) tree-ring reconstruction of monsoon season Brahmaputra discharge to demonstrate that the early instrumental period (1956-1986 C.E.) ranks amongst the driest of the past seven centuries (13th percentile). Further, flood hazard inferred from the recurrence frequency of high discharge years is severely underestimated by 24-38% in the instrumental record compared to previous centuries and climate model projections. A focus on only recent observations will therefore be insufficient to accurately characterise flood hazard risk in the region, both in the context of natural variability and climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA