Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Blood ; 127(9): 1117-27, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26813675

RESUMO

Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy is highly promising but requires robust T-cell expansion and engraftment. A T-cell defect in chronic lymphocytic leukemia (CLL) due to disease and/or therapy impairs ex vivo expansion and response to CAR T cells. To evaluate the effect of ibrutinib treatment on the T-cell compartment in CLL as it relates to CAR T-cell generation, we examined the phenotype and function of T cells in a cohort of CLL patients during their course of treatment with ibrutinib. We found that ≥5 cycles of ibrutinib therapy improved the expansion of CD19-directed CAR T cells (CTL019), in association with decreased expression of the immunosuppressive molecule programmed cell death 1 on T cells and of CD200 on B-CLL cells. In support of these findings, we observed that 3 CLL patients who had been treated with ibrutinib for ≥1 year at the time of T-cell collection had improved ex vivo and in vivo CTL019 expansion, which correlated positively together and with clinical response. Lastly, we show that ibrutinib exposure does not impair CAR T-cell function in vitro but does improve CAR T-cell engraftment, tumor clearance, and survival in human xenograft models of resistant acute lymphocytic leukemia and CLL when administered concurrently. Our collective findings indicate that ibrutinib enhances CAR T-cell function and suggest that clinical trials with combination therapy are warranted. Our studies demonstrate that improved T-cell function may also contribute to the efficacy of ibrutinib in CLL. These trials were registered at www.clinicaltrials.gov as #NCT01747486, #NCT01105247, and #NCT01217749.


Assuntos
Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/imunologia , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Adenina/análogos & derivados , Administração Oral , Idoso , Animais , Antígenos CD/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Demografia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Técnicas de Transferência de Genes , Humanos , Terapia de Imunossupressão , Células K562 , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Piperidinas , Receptor de Morte Celular Programada 1/metabolismo , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Linfócitos T/efeitos dos fármacos , Fatores de Tempo , Resultado do Tratamento
2.
Environ Monit Assess ; 190(6): 339, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748723

RESUMO

Dam removal is an increasingly common river restoration option, yet some of the mechanisms leading to ecological changes remain unquantified. We assessed relationships between riffle structure and benthic macroinvertebrate and fish assemblages 2 years after a lowhead dam removal in Ohio, USA. Hydrogeomorphic, water-chemistry, and biotic surveys were conducted at seven study riffles at six time intervals from spring 2014 through summer 2015. The density and diversity of macroinvertebrates and fish were significantly different over time, largely as a function of season (lowest densities in early spring, greatest in summer). Macroinvertebrate, but not fish, assemblage composition was different by time but not riffle. Although hydrogeomorphic characteristics (e.g., streamflow velocity, substrate size) were linked to shifts in macroinvertebrates and fish, chemical water-quality parameters (e.g., dissolved oxygen, nutrient concentrations) were also implicated as potential biotic drivers. Our results indicate that riffle habitat development can be an important mechanism related to restoring sensitive species and biological diversity following dam removal.


Assuntos
Organismos Aquáticos/classificação , Biota , Monitoramento Ambiental/métodos , Peixes/classificação , Invertebrados/classificação , Rios , Animais , Organismos Aquáticos/isolamento & purificação , Biodiversidade , Ecossistema , Sedimentos Geológicos/análise , Ohio , Estações do Ano , Qualidade da Água
3.
Nat Biotechnol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653798

RESUMO

T cell receptor (TCR) gene therapy is a potent form of cellular immunotherapy in which patient T cells are genetically engineered to express TCRs with defined tumor reactivity. However, the isolation of therapeutic TCRs is complicated by both the general scarcity of tumor-specific T cells among patient T cell repertoires and the patient-specific nature of T cell epitopes expressed on tumors. Here we describe a high-throughput, personalized TCR discovery pipeline that enables the assembly of complex synthetic TCR libraries in a one-pot reaction, followed by pooled expression in reporter T cells and functional genetic screening against patient-derived tumor or antigen-presenting cells. We applied the method to screen thousands of tumor-infiltrating lymphocyte (TIL)-derived TCRs from multiple patients and identified dozens of CD4+ and CD8+ T-cell-derived TCRs with potent tumor reactivity, including TCRs that recognized patient-specific neoantigens.

4.
Cogn Res Princ Implic ; 8(1): 71, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117387

RESUMO

Vehicle automation is becoming more prevalent. Understanding how drivers use this technology and its safety implications is crucial. In a 6-8 week naturalistic study, we leveraged a hybrid naturalistic driving research design to evaluate driver behavior with Level 2 vehicle automation, incorporating unique naturalistic and experimental control conditions. Our investigation covered four main areas: automation usage, system warnings, driving demand, and driver arousal, as well as secondary task engagement. While on the interstate, drivers were advised to engage Level 2 automation whenever they deemed it safe, and they complied by using it over 70% of the time. Interestingly, the frequency of system warnings increased with prolonged use, suggesting an evolving relationship between drivers and the automation features. Our data also revealed that drivers were discerning in their use of automation, opting for manual control under high driving demand conditions. Contrary to common safety concerns, our data indicated no significant rise in driver fatigue or fidgeting when using automation, compared to a control condition. Additionally, observed patterns of engagement in secondary tasks like radio listening and text messaging challenge existing assumptions about automation leading to dangerous driver distraction. Overall, our findings provide new insights into the conditions under which drivers opt to use automation and reveal a nuanced behavioral profile that emerges when automation is in use.


Assuntos
Direção Distraída , Tecnologia , Humanos , Automação , Nível de Alerta , Fadiga
5.
Cancer Res ; 82(1): 90-104, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34737214

RESUMO

ECT2 is an activator of RHO GTPases that is essential for cytokinesis. In addition, ECT2 was identified as an oncoprotein when expressed ectopically in NIH/3T3 fibroblasts. However, oncogenic activation of ECT2 resulted from N-terminal truncation, and such truncated ECT2 proteins have not been found in patients with cancer. In this study, we observed elevated expression of full-length ECT2 protein in preneoplastic colon adenomas, driven by increased ECT2 mRNA abundance and associated with APC tumor-suppressor loss. Elevated ECT2 levels were detected in the cytoplasm and nucleus of colorectal cancer tissue, suggesting cytoplasmic mislocalization as one mechanism of early oncogenic ECT2 activation. Importantly, elevated nuclear ECT2 correlated with poorly differentiated tumors, and a low cytoplasmic:nuclear ratio of ECT2 protein correlated with poor patient survival, suggesting that nuclear and cytoplasmic ECT2 play distinct roles in colorectal cancer. Depletion of ECT2 reduced anchorage-independent cancer cell growth and invasion independent of its function in cytokinesis, and loss of Ect2 extended survival in a Kras G12D Apc-null colon cancer mouse model. Expression of ECT2 variants with impaired nuclear localization or guanine nucleotide exchange catalytic activity failed to restore cancer cell growth or invasion, indicating that active, nuclear ECT2 is required to support tumor progression. Nuclear ECT2 promoted ribosomal DNA transcription and ribosome biogenesis in colorectal cancer. These results support a driver role for both cytoplasmic and nuclear ECT2 overexpression in colorectal cancer and emphasize the critical role of precise subcellular localization in dictating ECT2 function in neoplastic cells. SIGNIFICANCE: ECT2 overexpression and mislocalization support its role as a driver in colon cancer that is independent from its function in normal cell cytokinesis.


Assuntos
Neoplasias Colorretais/genética , Genômica/métodos , Proteínas Proto-Oncogênicas/metabolismo , Idoso , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos
6.
Cancer Immunol Immunother ; 60(7): 985-97, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21461886

RESUMO

Multiple myeloma is incurable with standard therapies but is susceptible to a T-cell-mediated graft versus myeloma effect after allogeneic stem cell transplantation. We sought to identify myeloma-specific antigens that might be used for T-cell immunotherapy of myeloma. MAGE-C1 (CT-7) is a cancer-testis antigen that is expressed by tumor cells in >70% of myeloma patients and elicits a humoral response in up to 93% of patients with CT-7(+) myeloma. No CD8(+) T-cell epitopes have been described for CT-7, so we used a combination of reverse immunology and immunization of HLA-A2 transgenic mice with a novel cell-based vaccine to identify three immunogenic epitopes of CT-7 that are recognized by human CD8(+) T-cells. CT-7-specific T-cells recognizing two of these peptides are able to recognize myeloma cells as well as CT-7 gene-transduced tumor cells, demonstrating that these epitopes are naturally processed and presented by tumor cells. This is the first report of the identification of immunogenic CD8(+) T-cell epitopes of MAGE-C1 (CT-7), which is the most commonly expressed cancer-testis antigen found in myeloma, and these epitopes may be promising candidate targets for vaccination or T-cell therapy of myeloma or other CT-7(+) malignancies.


Assuntos
Antígenos de Neoplasias/imunologia , Epitopos de Linfócito T/imunologia , Imunoterapia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Proteínas de Neoplasias/imunologia , Animais , Apresentação de Antígeno , Antígenos de Neoplasias/genética , Células Dendríticas/imunologia , Citometria de Fluxo , Antígeno HLA-A2/fisiologia , Humanos , Interferon gama/metabolismo , Camundongos , Camundongos Transgênicos , Mieloma Múltiplo/genética , Proteínas de Neoplasias/genética , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/imunologia , Linfócitos T Citotóxicos/imunologia , Células Tumorais Cultivadas , Vacinação
7.
Science ; 373(6561): 1327-1335, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34529489

RESUMO

During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor's requirement to avoid the adaptive immune system.


Assuntos
Carcinogênese , Inativação Gênica , Genes Supressores de Tumor , Evasão da Resposta Imune , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Quimiocina CCL2/metabolismo , Feminino , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Evasão da Resposta Imune/genética , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos SCID , Transplante de Neoplasias , Neoplasias Experimentais/patologia , Seleção Genética , Microambiente Tumoral
8.
Mol Ther Oncolytics ; 11: 20-38, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30306125

RESUMO

We generated two humanized interleukin-13 receptor α2 (IL-13Rα2) chimeric antigen receptors (CARs), Hu07BBz and Hu08BBz, that recognized human IL-13Rα2, but not IL-13Rα1. Hu08BBz also recognized canine IL-13Rα2. Both of these CAR T cell constructs demonstrated superior tumor inhibitory effects in a subcutaneous xenograft model of human glioma compared with a humanized EGFRvIII CAR T construct used in a recent phase 1 clinical trial (ClinicalTrials.gov: NCT02209376). The Hu08BBz demonstrated a 75% reduction in orthotopic tumor growth using low-dose CAR T cell infusion. Using combination therapy with immune checkpoint blockade, humanized IL-13Rα2 CAR T cells performed significantly better when combined with CTLA-4 blockade, and humanized EGFRvIII CAR T cells' efficacy was improved by PD-1 and TIM-3 blockade in the same mouse model, which was correlated with the levels of checkpoint molecule expression in co-cultures with the same tumor in vitro. Humanized IL-13Rα2 CAR T cells also demonstrated benefit from a self-secreted anti-CTLA-4 minibody in the same mouse model. In addition to a canine glioma cell line (J3T), canine osteosarcoma lung cancer and leukemia cell lines also express IL-13Rα2 and were recognized by Hu08BBz. Canine IL-13Rα2 CAR T cell was also generated and tested in vitro by co-culture with canine tumor cells and in vivo in an orthotopic model of canine glioma. Based on these results, we are designing a pre-clinical trial to evaluate the safety of canine IL-13Rα2 CAR T cells in dog with spontaneous IL-13Rα2-positive glioma, which will help to inform a human clinical trial design for glioblastoma using humanized scFv-based IL-13Rα2 targeting CAR T cells.

9.
Cell Rep ; 20(2): 427-438, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28700943

RESUMO

Activating mutations in the KRAS oncogene are highly prevalent in tumors, especially those of the colon, lung, and pancreas. To better understand the genetic dependencies that K-Ras mutant cells rely upon for their growth, we employed whole-genome CRISPR loss-of-function screens in two isogenic pairs of cell lines. Since loss of essential genes is uniformly toxic in CRISPR-based screens, we also developed a small hairpin RNA (shRNA) library targeting essential genes. These approaches uncovered a large set of proteins whose loss results in the selective reduction of K-Ras mutant cell growth. Pathway analysis revealed that many of these genes function in the mitochondria. For validation, we generated isogenic pairs of cell lines using CRISPR-based genome engineering, which confirmed the dependency of K-Ras mutant cells on these mitochondrial pathways. Finally, we found that mitochondrial inhibitors reduce the growth of K-Ras mutant tumors in vivo, aiding in the advancement of strategies to target K-Ras-driven malignancy.


Assuntos
Proliferação de Células/fisiologia , Genes ras/genética , Proteínas Proto-Oncogênicas/metabolismo , Animais , Linhagem Celular , Proliferação de Células/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Feminino , Células HCT116 , Humanos , Hidrazonas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Minociclina/análogos & derivados , Minociclina/farmacologia , Mutação/genética , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Proteínas Proto-Oncogênicas/genética , Tigeciclina , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Genes Cancer ; 4(11-12): 460-75, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24386507

RESUMO

Ect2, a Rho guanine nucleotide exchange factor (RhoGEF), is atypical among RhoGEFs in its predominantly nuclear localization in interphase cells. One current model suggests that Ect2 mislocalization drives cellular transformation by promoting aberrant activation of cytoplasmic Rho family GTPase substrates. However, in ovarian cancers, where Ect2 is both amplified and overexpressed at the mRNA level, we observed that the protein is highly expressed and predominantly nuclear and that nuclear but not cytoplasmic Ect2 increases with advanced disease. Knockdown of Ect2 in ovarian cancer cell lines impaired their anchorage-independent growth without affecting their growth on plastic. Restoration of Ect2 expression rescued the anchorage-independent growth defect, but not if either the DH catalytic domain or the nuclear localization sequences of Ect2 were mutated. These results suggested a novel mechanism whereby Ect2 could drive transformation in ovarian cancer cells by acting as a RhoGEF specifically within the nucleus. Interestingly, Ect2 had an intrinsically distinct GTPase specificity profile in the nucleus versus the cytoplasm. Nuclear Ect2 bound preferentially to Rac1, while cytoplasmic Ect2 bound to RhoA but not Rac. Consistent with nuclear activation of endogenous Rac, Ect2 overexpression was sufficient to recruit Rac effectors to the nucleus, a process that required a functional Ect2 catalytic domain. Furthermore, expression of active nuclearly targeted Rac1 rescued the defect in transformed growth caused by Ect2 knockdown. Our work suggests a novel mechanism of Ect2-driven transformation, identifies subcellular localization as a regulator of GEF specificity, and implicates activation of nuclear Rac1 in cellular transformation.

11.
Genes Cancer ; 2(10): 932-42, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22701760

RESUMO

Ect2 is a member of the human Dbl family of guanine nucleotide exchange factors (RhoGEFs) that serve as activators of Rho family small GTPases. Although Ect2 is one of at least 25 RhoGEFs that can activate the RhoA small GTPase, cell culture studies using established cell lines determined that Ect2 is essential for mammalian cell cytokinesis and proliferation. To address the function of Ect2 in normal mammalian development, we performed gene targeting to generate Ect2 knockout mice. The heterozygous Ect2(+/-) mice showed normal development and life span, indicating that Ect2 haplodeficiency was not deleterious for development or growth. In contrast, Ect2(-/-) embryos were not found at birth or postimplantation stages. Ect2(-/-) blastocysts were recovered at embryonic day 3.5 but did not give rise to viable outgrowths in culture, indicating that Ect2 is required for peri-implantation development. To further assess the importance of Ect2 in normal cell physiology, we isolated primary fibroblasts from Ect2(fl/fl) embryos (MEFs) and ablated Ect2 using adenoviral delivery of Cre recombinase. We observed a significant increase in multinucleated cells and accumulation of cells in G2/M phase, consistent with a role for Ect2 in cytokinesis. Ect2 deficiency also caused enlargement of the cytoplasm and impaired cell migration. Finally, although Ect2-dependent activation of RhoA has been implicated in cytokinesis, Ect2 can also activate Rac1 and Cdc42 to cause growth transformation. Surprisingly, ectopic expression of constitutively activated RhoA, Rac1, or Cdc42, known substrates of Ect2, failed to phenocopy Ect2 and did not rescue the defect in cytokinesis caused by loss of Ect2. In summary, our results establish the unique role of Ect2 in development and normal cell proliferation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA