Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Infect Dis ; 222(6): 1037-1045, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32285112

RESUMO

BACKGROUND: Sepsis is a life-threatening systemic disease with severe microvascular dysfunction. Pericytes preserve vascular homeostasis. To our knowledge, the potential roles of microRNAs in sepsis-induced pericyte dysfunction have not been explored. METHODS: We determined lung pericyte expression of miR-145a in cecal ligation and puncture (CLP)-induced sepsis. Mouse lung pericytes were isolated and transfected with a miR-145a mimic, followed by stimulation with lipopolysaccharide (LPS). We measured inflammatory cytokine levels. To assess the functions of miR-145a in vivo, we generated a pericyte-specific miR-145a-knockout mouse and determined sepsis-induced organ injury, lung and renal vascular leakage, and mouse survival rates. We used RNA sequencing and Western blotting to analyze the signaling pathways regulated by miR-145a. RESULTS: CLP led to decreased miR-145a expression in lung pericytes. The miR-145a mimic inhibited LPS-induced increases in cytokines. In CLP-induced sepsis, pericytes lacking miR-145a exhibited increased lung and kidney vascular leakage and reduced survival rates. We found that miR-145a could suppress LPS-induced NF-κB activation. In addition, we confirmed that the transcription factor Friend leukemia virus integration 1 (Fli-1) is a target of miR-145a and that Fli-1 activates NF-κB signaling. CONCLUSION: Our results demonstrated that pericyte miR-145a mediates sepsis-associated microvascular dysfunction, potentially by means of Fli-1-mediated modulation of NF-κB signaling.


Assuntos
Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Pericitos/metabolismo , Sepse/etiologia , Animais , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , NF-kappa B/metabolismo , Prognóstico , Interferência de RNA , Sepse/mortalidade , Transdução de Sinais
2.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1261-L1269, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32321279

RESUMO

Circulating microRNAs (miRNAs) can be taken up by recipient cells and have been recently associated with the acute respiratory distress syndrome (ARDS). Their role in host predisposition to the syndrome is unknown. The objective of the study was to identify circulating miRNAs associated with the development of sepsis-related ARDS and examine their impact on endothelial cell gene expression and function. We determined miRNA levels in plasma collected from subjects during the first 24 h of admission to a tertiary intensive care unit for sepsis. A miRNA that was differentially expressed between subjects who did and did not develop ARDS was identified and was transfected into human pulmonary microvascular endothelial cells (HPMECs). RNA sequencing, in silico analysis, cytokine expression, and leukocyte migration assays were used to determine the impact of this miRNA on gene expression and cell function. In two cohorts, circulating miR-887-3p levels were elevated in septic patients who developed ARDS compared with those who did not. Transfection of miR-887-3p into HPMECs altered gene expression, including the upregulation of several genes previously associated with ARDS (e.g., CXCL10, CCL5, CX3CL1, VCAM1, CASP1, IL1B, IFNB, and TLR2), and activation of cellular pathways relevant to the response to infection. Functionally, miR-887-3p increased the endothelial release of chemokines and facilitated trans-endothelial leukocyte migration. Circulating miR-887-3p is associated with ARDS in critically ill patients with sepsis. In vitro, miR-887-3p regulates the expression of genes relevant to ARDS and neutrophil tracking. This miRNA may contribute to ARDS pathogenesis and could represent a novel therapeutic target.


Assuntos
MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , MicroRNAs/sangue , MicroRNAs/genética , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/genética , Movimento Celular , Quimiocinas/metabolismo , MicroRNA Circulante/metabolismo , Estudos de Coortes , Feminino , Humanos , Pulmão/irrigação sanguínea , Masculino , MicroRNAs/metabolismo , Microvasos/patologia , Pessoa de Meia-Idade , Neutrófilos/metabolismo
3.
Crit Care ; 23(1): 44, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760290

RESUMO

BACKGROUND: The acute respiratory distress syndrome (ARDS) is characterized by disruption of the alveolar-capillary barrier resulting in accumulation of proteinaceous edema and increased inflammatory cells in the alveolar space. We previously found that endothelial progenitor cell (EPC) exosomes prevent endothelial dysfunction and lung injury in sepsis in part due to their encapsulation of miRNA-126. However, the effects of EPC exosomes in acute lung injury (ALI) remain unknown. METHODS: To determine if EPC exosomes would have beneficial effects in ALI, intratracheal administration of lipopolysaccharide (LPS) was used to induce ALI in mice. Lung permeability, inflammation, and the role of miRNA-126 in the alveolar-epithelial barrier function were examined. RESULTS: The intratracheal administration of EPC exosomes reduced lung injury following LPS-induced ALI at 24 and 48 h. Compared to placebo, intratracheal administration of EPC exosomes significantly reduced the cell number, protein concentration, and cytokines/chemokines in the bronchoalveolar lavage fluid (BALF), indicating a reduction in permeability and inflammation. Further, EPC exosomes reduced myeloperoxidase (MPO) activity, lung injury score, and pulmonary edema, demonstrating protection against lung injury. Murine fibroblast (NIH3T3) exosomes, which do not contain abundant miRNA-126, did not provide these beneficial effects. In human small airway epithelial cells (SAECs), we found that overexpression of miRNA-126-3p can target phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2), while overexpression of miRNA-126-5p inhibits the inflammatory alarmin HMGB1 and permeability factor VEGFα. Interestingly, both miR-126-3p and 5p increase the expression of tight junction proteins suggesting a potential mechanism by which miRNA-126 may mitigate LPS-induced lung injury. CONCLUSIONS: Our data demonstrated that human EPC exosomes are beneficial in LPS-induced ALI mice, in part through the delivery of miRNA-126 into the injured alveolus.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Células Progenitoras Endoteliais/enzimologia , Inflamação/fisiopatologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Western Blotting/métodos , Exossomos/metabolismo , Proteína HMGB1/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/efeitos adversos , Camundongos , MicroRNAs/fisiologia , Peroxidase/metabolismo , Peroxidase/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Índice de Gravidade de Doença , Traqueia/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Mol Ther ; 26(5): 1375-1384, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29599080

RESUMO

Microvascular dysfunction leads to multi-organ failure and mortality in sepsis. Our previous studies demonstrated that administration of exogenous endothelial progenitor cells (EPCs) confers protection in sepsis as evidenced by reduced vascular leakage, improved organ function, and increased survival. We hypothesize that EPCs protect the microvasculature through the exosomes-mediated transfer of microRNAs (miRNAs). Mice were rendered septic by cecal ligation and puncture (CLP), and EPC exosomes were administered intravenously at 4 hr after CLP. EPC exosomes treatment improved survival, suppressing lung and renal vascular leakage, and reducing liver and kidney dysfunction in septic mice. EPC exosomes attenuated sepsis-induced increases in plasma levels of cytokines and chemokine. Moreover, we determined miRNA contents of EPC exosomes with next-generation sequencing and found abundant miR-126-3p and 5p. We demonstrated that exosomal miR-126-5p and 3p suppressed LPS-induced high mobility group box 1 (HMGB1) and vascular cell adhesion molecule 1 (VCAM1) levels, respectively, in human microvascular endothelial cells (HMVECs). Inhibition of microRNA-126-5p and 3p through transfection with microRNA-126-5p and 3p inhibitors abrogated the beneficial effect of EPC exosomes. The inhibition of exosomal microRNA-126 failed to block LPS-induced increase in HMGB1 and VCAM1 protein levels in HMVECs and negated the protective effect of exosomes on sepsis survival. Thus, EPC exosomes prevent microvascular dysfunction and improve sepsis outcomes potentially through the delivery of miR-126.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Exossomos/metabolismo , Sepse/metabolismo , Animais , Biomarcadores , Permeabilidade Capilar , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Células Progenitoras Endoteliais/citologia , Humanos , Camundongos , MicroRNAs/genética , Especificidade de Órgãos , Prognóstico , Sepse/etiologia , Sepse/mortalidade
5.
J Infect Dis ; 218(12): 1995-2005, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30053030

RESUMO

Background: Pericytes are vascular mural cells and are embedded in the basement membrane of the microvasculature. Recent studies suggest a role for pericytes in lipopolysaccharide (LPS)-induced microvascular dysfunction and mortality, but the mechanisms of pericyte loss in sepsis are largely unknown. Methods: By using a cecal ligation and puncture (CLP)-induced murine model of sepsis, we observed that CLP led to lung and renal pericyte loss and reduced lung pericyte density and pericyte/endothelial cell (EC) coverage. Results: Up-regulated Friend leukemia virus integration 1 (Fli-1) messenger ribonucleic acid (RNA) and protein levels were found in lung pericytes from CLP mice in vivo and in LPS-stimulated lung pericytes in vitro. Knockout of Fli-1 in Foxd1-derived pericytes prevented CLP-induced pericyte loss, vascular leak, and improved survival. Disrupted Fli-1 expression by small interfering RNA inhibited LPS-induced inflammatory cytokines and chemokines in cultured lung pericytes. Furthermore, CLP-induced pericyte pyroptosis was mitigated in pericyte Fli-1 knockout mice. Conclusions: Our findings suggest that Fli-1 is a potential therapeutic target in sepsis.


Assuntos
Pericitos/fisiologia , Proteína Proto-Oncogênica c-fli-1/metabolismo , Sepse/metabolismo , Animais , Ceco , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Inflamação/metabolismo , Ligadura , Lipopolissacarídeos , Pulmão/citologia , Camundongos , Camundongos Knockout , Piroptose , Sepse/imunologia , Regulação para Cima
6.
Crit Care ; 19: 440, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26683209

RESUMO

BACKGROUND: Endothelial dysfunction plays a critical role in the development of sepsis-related organ failure; however, the mechanisms that govern its development are not fully understood. Endothelial progenitor cells (EPCs) reduce vascular leak and organ failure in experimental sepsis while modulating plasma expression of microRNA (miRNA). MicroRNAs are small, noncoding segments of RNA that regulate gene expression and are known to modulate endothelial cell function and inflammatory signaling pathways. We hypothesized that miRNA may play an etiologic role in the endothelial dysfunction of sepsis and that their extracellular expression levels would be altered in those with shock. METHODS: Thirteen miRNAs were identified by literature search and analysis of the contents of human EPC-derived exosomes using real-time PCR. Plasma samples were obtained from patients within 24 hours of their admission to ICUs with severe sepsis (n = 62) and from healthy controls (n = 32) and real-time PCR was used to measure the expression of the candidate miRNAs. The Wilcoxon rank sum test was used to compare expression levels of the 13 candidate miRNAs in septic patients with (n = 29) and without (n = 33) shock while logistic regression was used to determine the area under the curve for associations between miRNA expression and shock. Bioinformatic analyses using miRNA databases were performed to identify pathways and gene targets of differentially expressed miRNA with potential relevance to sepsis-related shock. RESULTS: MiRNA-34a expression was significantly increased in the group who developed shock (p = 0.03) while miR-15a and miR-27a expressions were significantly decreased in this group (p = 0.006 and 0.03, respectively). The combined expression of these three miRNAs predicted shock with an area under the curve of 0.78 (95 % CI 0.66-0.90). In silico analyses predict that these three miRNAs regulate genes involved in endothelial cell cycle, apoptosis, VEGF signaling, LPS-stimulated MAPK signaling, and nuclear factor kappa B signaling. CONCLUSIONS: The plasma levels of miRNA are altered in patients with severe sepsis complicated by shock and may offer prognostic value as well as insights into the mechanisms of endothelial dysfunction in sepsis.


Assuntos
MicroRNAs/análise , Choque Séptico/patologia , Adulto , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Plasma/metabolismo , Prognóstico , Choque Séptico/complicações , Choque Séptico/etiologia , Choque Séptico/metabolismo
7.
Am J Respir Crit Care Med ; 189(12): 1509-19, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24707934

RESUMO

RATIONALE: Endothelial progenitor cells (EPCs) have been associated with human sepsis but their role is incompletely understood. Stromal cell-derived factor (SDF)-1α facilitates EPC recruitment and is elevated in murine sepsis models. Previous studies have demonstrated that the SDF-1α analog CTCE-0214 (CTCE) is beneficial in polymicrobial sepsis induced by cecal ligation and puncture (CLP) in mice. OBJECTIVES: We hypothesized that exogenously administered EPCs are also beneficial in CLP sepsis and that CTCE provides synergistic benefit. METHODS: Mice were subjected to CLP and administered EPCs at varying doses, CTCE, or a combination of the two. Mouse survival, plasma miRNA expression, IL-10 production, and lung vascular leakage were determined. The in vitro effect of CTCE on miRNA expression and EPC function were determined. MEASUREMENTS AND MAIN RESULTS: Survival was improved with EPC therapy at a threshold of 10(6) cells. In coculture studies, EPCs augmented LPS-induced macrophage IL-10 production. In vivo EPC administration in sepsis increased plasma IL-10, suppressed lung vascular leakage, attenuated liver and kidney injury, and augmented miR-126 and -125b expression, which regulate endothelial cell function and/or inflammation. When subthreshold numbers of EPCs were coadministered with CTCE in CLP mice they synergistically improved survival. We demonstrated that CTCE recruits endogenous EPCs in septic mice. In in vitro analysis, CTCE enhanced EPC proliferation, angiogenesis, and prosurvival signaling while inhibiting EPC senescence. These cellular effects were, in part, explained by the effect of CTCE on miR-126, -125b, -34a, and -155 expression in EPCs. CONCLUSIONS: EPCs and CTCE represent important potential therapeutic strategies in sepsis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Quimiocina CXCL12/uso terapêutico , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Células Endoteliais/transplante , Sepse/terapia , Animais , Anti-Inflamatórios/farmacologia , Biomarcadores/metabolismo , Quimiocina CXCL12/farmacologia , Terapia Combinada , Células Endoteliais/efeitos dos fármacos , Humanos , Interleucina-10/metabolismo , Masculino , Camundongos , MicroRNAs/metabolismo , Sepse/imunologia , Sepse/metabolismo , Sepse/mortalidade , Células-Tronco/efeitos dos fármacos , Resultado do Tratamento
8.
Immunology ; 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25201453

RESUMO

Previous studies demonstrated that the CXCL12 peptide analogue CTCE-0214 (CTCE) has beneficial effects in experimental sepsis induced by cecal ligation and puncture (CLP). We examined the hypothesis that CTCE recruits neutrophils (PMN) to the site of infection, enhances PMN function and improves survival of mice in CLP-induced sepsis with antibiotic treatment. Septic mice (n=15) were administered imipenem (25mg/kg) and CTCE (10 mg/kg) subcutaneously vs. vehicle control at designated intervals post-CLP. CTCE treatment increased PMN recruitment in CLP-induced sepsis as evidenced by increased PMN in blood by 2.4±0.6 fold at 18h, 2.9±0.6 fold at 24h, respectively and in peritoneal fluid by 2.0±0.2 fold at 24h vs. vehicle control. CTCE treatment reduced bacterial invasion in blood (CFU decreased 77±11%), peritoneal fluid (CFU decreased 78±9%) and lung (CFU decreased 79±8% vs. CLP vehicle). The improved PMN recruitment and bacterial clearance correlated with reduced mortality with CTCE treatment (20% vs. 67% vehicle controls). In vitro studies support the notion that CTCE augments PMN function by enhancing phagocytic activity (1.25±0.02 fold), increasing intracellular production of ROS (32±4%) and improving bacterial killing (CFU decreased 27±3%). These composite findings support the hypothesis that specific CXCL12 analogues with ancillary antibiotic treatment are beneficial in experimental sepsis, in part, by augmenting PMN recruitment and function. This article is protected by copyright. All rights reserved.

9.
Biochim Biophys Acta ; 1813(3): 466-72, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21255617

RESUMO

Previous studies have implicated a role of heterotrimeric Gα(i) proteins in lipopolysaccharide (LPS)-induced inflammatory responses. We hypothesized that Toll-like receptor (TLR) signaling regulates Gα(i) proteins, which are anti-inflammatory in endotoxemia and polymicrobial sepsis. RAW 264.7 cells were stimulated with LPS and the Gα(i)-GTP protein complex was immunoprecipitated with a Gα(i) protein activation assay. In subsequent in vivo studies, the Gα(i) protein inhibitor pertussis toxin (PTx) or G(i) protein agonist mastoparan (MP-7) were administrated prior to endotoxemia. LPS-induced pro-inflammatory cytokines and mortality were determined. To examine the role of Gα(i2) in sepsis, Gα(i2) (-/-) and wildtype (WT) mice were subjected to cecal ligation and puncture (CLP) and monitored every 24 h for 120 h. Other mice were sacrificed 24 h after CLP. Peritoneal fluid, blood, and tissue samples were collected. Plasma pro-inflammatory cytokine production, bacterial load in peritoneal fluid, blood and lung tissue, myeloperoxidase (MPO) activity in lung and liver and different immune cell populations in spleen were studied. We found that Gα(i) proteins are rapidly activated by LPS followed by rapid inactivation. These studies provide the first direct evidence that Gα(i) proteins are modulated by TLR signaling. In following studies, PTx augmented LPS-induced plasma TNFα, IL-6, whereas MP-7 suppressed LPS-induced TNFα and decreased LPS-induced mortality. In sepsis studies, the survival rate post-CLP was significantly decreased in the Gα(i2) (-/-) mice compared to WT mice. CLP-induced plasma TNFα, IL-6, bacterial load in peritoneal fluid, blood and lung tissue and lung and liver MPO activity were significantly increased in Gα(i2) (-/-) compared to WT mice. Gα(i2) (-/-) mice also exhibited increased Th1 and Th2 responses compared to WT mice. Taken together, Gα(i) proteins are activated by LPS and negatively regulate endotoxemia and sepsis. Understanding the role of Gα(i2) protein in regulation of the inflammatory response in sepsis may provide novel targets for treatment of sepsis.


Assuntos
Endotoxemia/imunologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/imunologia , Lipopolissacarídeos/imunologia , Sepse/imunologia , Animais , Carga Bacteriana , Ceco/lesões , Ceco/cirurgia , Linhagem Celular , Citocinas/sangue , Citocinas/imunologia , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/imunologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Knockout , Peptídeos/imunologia , Peroxidase/imunologia , Toxina Pertussis/imunologia , Baço/citologia , Linfócitos T Auxiliares-Indutores/citologia , Venenos de Vespas/imunologia
10.
Am J Pathol ; 177(4): 1834-47, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20709805

RESUMO

The nuclear peroxisome proliferator-activated receptor δ (PPARδ) is an important regulator of lipid metabolism. In contrast to its known effects on energy homeostasis, its biological role on inflammation is not well understood. We investigated the role of PPARδ in the modulation of the nuclear factor-κB (NF-κB)-driven inflammatory response to polymicrobial sepsis in vivo and in macrophages in vitro. We demonstrated that administration of GW0742, a specific PPARδ ligand, provided beneficial effects to rats subjected to cecal ligation and puncture, as shown by reduced systemic release of pro-inflammatory cytokines and neutrophil infiltration in lung, liver, and cecum, when compared with vehicle treatment. Molecular analysis revealed that treatment with GW0742 reduced NF-κB binding to DNA in lung and liver. In parallel experiments, heterozygous PPARδ-deficient mice suffered exaggerated lethality when subjected to cecal ligation and puncture and exhibited severe lung injury and higher levels of circulating tumor necrosis factor-α (TNFα) and keratinocyte-derived chemokine than wild-type mice. Furthermore, in lipopolysaccharide-stimulated J774.A1 macrophages, GW0742 reduced TNFα production by inhibiting NF-κB activation. RNA silencing of PPARδ abrogated the inhibitory effects of GW0742 on TNFα production. Chromatin immunoprecipitation assays revealed that PPARδ displaced the NF-κB p65 subunit from the κB elements of the TNFα promoter, while recruiting the co-repressor BCL6. These data suggest that PPARδ is a crucial anti-inflammatory regulator, providing a basis for novel sepsis therapies.


Assuntos
Bacteriemia/prevenção & controle , Inflamação/prevenção & controle , NF-kappa B/metabolismo , PPAR delta/fisiologia , Sepse/metabolismo , Sepse/microbiologia , Animais , Bacteriemia/etiologia , Bacteriemia/metabolismo , Western Blotting , Ceco/imunologia , Ceco/metabolismo , Ceco/microbiologia , Núcleo Celular/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Hipotensão , Técnicas Imunoenzimáticas , Inflamação/etiologia , Inflamação/metabolismo , Luciferases/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , PPAR delta/agonistas , PPAR delta/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Sepse/imunologia , Transdução de Sinais , Taxa de Sobrevida , Tiazóis/farmacologia
11.
Immunology ; 130(3): 344-51, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20465566

RESUMO

SUMMARY: Beta-arrestins 1 and 2 are ubiquitously expressed proteins that alter signalling by G-protein-coupled receptors. beta-arrestin 2 plays an important role as a signalling adaptor and scaffold in regulating cellular inflammatory responses. We hypothesized that beta-arrestin 2 is a critical modulator of inflammatory response in experimental sepsis. beta-arrestin 2(-/-) and wild-type (WT) mice were subjected to caecal ligation and puncture (CLP). The survival rate was significantly decreased (P < 0.05) in beta-arrestin 2(-/-) mice (13% survival) compared with WT mice (53% survival). A second group of mice were killed 18 hr after CLP for blood, peritoneal lavage and tissue sample collection. CLP-induced plasma interleukin (IL)-6 was significantly increased 25 +/- 12 fold and caecal myeloperoxidase (MPO) activity was increased 2.4 +/- 0.3 fold in beta-arrestin 2(-/-) compared with WT mice. beta-arrestin 2(-/-) mice exhibited more severe lung damage and higher bacterial loads compared with WT mice post CLP challenge as measured by histopathology and colony-forming unit count. In subsequent experiments, splenocytes, peritoneal macrophages and bone marrow-derived macrophages (BMDMs) were isolated and cultured from beta-arrestin 2(-/-) and WT mice and stimulated in vitro with lipopolysaccharide (LPS). Tumour necrosis factor (TNF)-alpha, IL-6 and IL-10 production induced by LPS was significantly augmented (2.2 +/- 0.2 fold, 1.8 +/- 0.1 fold, and 2.2 +/- 0.4 fold, respectively; P < 0.05) in splenocytes from beta-arrestin 2(-/-) mice compared with WT mice. The splenocyte response was different from that of peritoneal macrophages or BMDMs, which exhibited no difference in TNF-alpha and IL-6 production upon LPS stimulation between WT and beta-arrestin 2(-/-) mice. Our data demonstrate that beta-arrestin 2 functions to negatively regulate the inflammatory response in polymicrobial sepsis.


Assuntos
Arrestinas/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Sepse/complicações , Sepse/metabolismo , Animais , Arrestinas/genética , Sangue/microbiologia , Ceco/enzimologia , Inflamação/genética , Inflamação/imunologia , Interleucina-10/metabolismo , Interleucina-6/sangue , Interleucina-6/metabolismo , Fígado/enzimologia , Fígado/patologia , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cavidade Peritoneal/microbiologia , Peroxidase/metabolismo , Sepse/genética , Sepse/patologia , Baço/citologia , Baço/metabolismo , Análise de Sobrevida , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , beta-Arrestina 2 , beta-Arrestinas
12.
Mol Immunol ; 108: 1-7, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30739075

RESUMO

Our previous data demonstrated that Friend leukemia virus integration 1 (Fli-1), an ETS transcription factor, governs pericyte loss and vascular dysfunction in cecal ligation and puncture-induced murine sepsis by regulating essential pyroptosis markers including caspase-1. However, whether Fli-1 regulates caspase-1 expression levels in vitro and how Fli-1 regulates caspase-1 remain unknown. Our present work further demonstrated that overexpressed Fli-1 significantly increased caspase-1 and IL-18 expression levels in cultured mouse lung pericytes. Bacterial outer membrane vesicles (OMVs) have been found to induce cell pyroptosis through transferring LPS intracellularly. Using OMVs to induce an in vitro model of pyroptosis, we observed that OMVs significantly increased protein levels of Fli-1 in mouse lung pericytes. Furthermore, knockdown of Fli-1 by siRNA blocked OMVs-induced caspase-1, caspase-11 and IL-18 expression levels. As caspase-1 was predicted as a potential target of Fli-1, we cloned murine caspase-1 promoter into a luciferase construct. Our data demonstrate for the first time that Fli-1 regulates caspase-1 expression by directly binding to its promoter regions measured by chromatin immunoprecipitation (ChIP) assay and luciferase reporter system. In summary, our findings demonstrated a novel role and mechanism of Fli-1 in regulating caspase-1 expression in lung pericytes.


Assuntos
Caspase 1/imunologia , Regulação Enzimológica da Expressão Gênica/imunologia , Proteína Proto-Oncogênica c-fli-1/imunologia , Animais , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/farmacologia , Caspase 1/genética , Escherichia coli K12/química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Interleucina-18/genética , Interleucina-18/imunologia , Pulmão , Camundongos , Pericitos , Proteína Proto-Oncogênica c-fli-1/genética
13.
Inflammation ; 42(1): 170-184, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30244405

RESUMO

Sepsis is an acute inflammatory syndrome in response to infection. In some cases, excessive inflammation from sepsis results in endothelial dysfunction and subsequent increased vascular permeability leading to organ failure. We previously showed that treatment with endothelial progenitor cells, which highly express microRNA-126 (miR-126), improved survival in mice subjected to cecal ligation and puncture (CLP) sepsis. miRNAs are important regulators of gene expression and cell function, play a major role in endothelial homeostasis, and may represent an emerging therapeutic modality. However, delivery of miRNAs to cells in vitro and in vivo is challenging due to rapid degradation by ubiquitous RNases. Herein, we developed a nanoparticle delivery system separately combining deacetylated poly-N-acetyl glucosamine (DEAC-pGlcNAc) polymers with miRNA-126-3p and miRNA-126-5p and testing these combinations in vitro and in vivo. Our results demonstrate that DEAC-pGlcNAc polymers have an appropriate size and zeta potential for cellular uptake and when complexed, DEAC-pGlcNAc protects miRNA from RNase A degradation. Further, DEAC-pGlcNAc efficiently encapsulates miRNAs as evidenced by preventing their migration in an agarose gel. The DEAC-pGlcNAc-miRNA complexes were taken up by multiple cell types and the delivered miRNAs had biological effects on their targets in vitro including pERK and DLK-1. In addition, we found that delivery of DEAC-pGlcNAc alone or DEAC-pGlcNAc:miRNA-126-5p nanoparticles to septic animals significantly improved survival, preserved vascular integrity, and modulated cytokine production. These composite studies support the concept that DEAC-pGlcNAc nanoparticles are an effective platform for delivering miRNAs and that they may provide therapeutic benefit in sepsis.


Assuntos
Portadores de Fármacos/química , MicroRNAs/administração & dosagem , Nanopartículas/química , Sepse/tratamento farmacológico , Acetilglucosamina/uso terapêutico , Animais , Ceco/microbiologia , Citocinas/metabolismo , Endotélio Vascular/metabolismo , Ligadura , Camundongos , Punções/efeitos adversos , Sepse/etiologia , Sepse/metabolismo , Sepse/mortalidade , Taxa de Sobrevida
14.
Immunology ; 124(1): 51-7, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18028370

RESUMO

Peroxisome proliferator activated receptor-gamma (PPARgamma) has been reported to exert anti-inflammatory properties in endotoxic shock and sepsis. One phenomenon that alters the inflammatory response to endotoxin [lipopolysaccharide (LPS)] is endotoxin tolerance, which is caused by previous exposure to endotoxin. Here, we investigate whether changes in endogenous PPARgamma function regulate this phenomenon using three different models of LPS-induced tolerance in macrophages. In a first in vitro model, previous LPS exposure of murine J774.2 macrophages suppressed tumour necrosis factor-alpha (TNF-alpha) release in response to subsequent LPS challenge. Treatment of J774.2 cells with the PPARgamma inhibitor GW9662 did not alter tolerance induction because these cells were still hyporesponsive to the secondary LPS challenge. In a second ex vivo model, primary rat peritoneal macrophages from LPS-primed rats exhibited suppression of thromboxane B2 and TNF-alpha production, while maintaining nitrite production in response to in vitro LPS challenge. Pretreatment of rats with the PPARgamma inhibitor GW9662 in vivo failed to alter the tolerant phenotype of these primary macrophages. In a third ex vivo model, primary peritoneal macrophages with conditional deletion of PPARgamma were harvested from LPS-primed Cre-lox mice (Cre+/+ PPARgamma-/-) and exhibited significant suppression of TNF-alpha production in response to in vitro LPS challenge. Furthermore, both LPS-primed PPARgamma-deficient Cre+/+ PPARgamma-/- mice and wild-type Cre-/- PPARgamma+/+ mice exhibited reduced plasma TNF-alpha levels in response to a high dose of LPS in vivo. These data demonstrate that PPARgamma does not play a role in the LPS-induced tolerant phenotype in macrophages.


Assuntos
Tolerância Imunológica/imunologia , Macrófagos Peritoneais/imunologia , PPAR gama/imunologia , Anilidas/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta Imunológica , Tolerância Imunológica/efeitos dos fármacos , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Knockout , PPAR gama/antagonistas & inibidores , PPAR gama/deficiência , Ratos , Ratos Long-Evans , Fator de Necrose Tumoral alfa/biossíntese
15.
Mol Immunol ; 44(12): 3092-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17418896

RESUMO

Toll like receptors, the critical receptor family in innate immunity, have been shown to signal via both ERK 1/2 and transcription factor NFkappaB. beta-Arrestins 1 and 2 have recently been implicated in modulation of NFkappaB signaling and ERK 1/2 activation. Using a number of approaches: mouse embryonic fibroblasts (MEF) from wild-type (WT), beta-arrestins knockouts (KO), beta-arrestins 1 and 2 double KO, and MEFs with reconstituted WT beta-arrestins in the double KO cells, RNA interference (siRNA) specific knockdown of beta-arrestins, and overexpression of WT beta-arrestins, it was demonstrated that beta-arrestin 2 positively regulates LPS-induced ERK 1/2 activation and both beta-arrestins 1 and 2 negatively regulate LPS-induced NFkappaB activation. Also beta-arrestin 2 positively regulate LPS-induced IL-6 production and both beta-arrestins 1 and 2 positively regulate LPS-induced IL-8 production. The specific ERK1/2 inhibitor PD98059 significantly decreased LPS-induced IL-6 and IL-8 production suggesting that IL-6 and IL-8 production is, in part, mediated by ERK 1/2 activation. Over expression of wild type beta-arrestins 1 and 2 had no effect on LPS-induced ERK1/2 activation and LPS-induced IL-8 production suggesting that endogenous beta-arrestins 1 and 2 are sufficient to mediate maximum ERK 1/2 activity and IL-8 production. beta-Arrestins thus not only negatively regulate LPS-induced NFkappaB activation but also positively regulate ERK 1/2 activation and specific pro-inflammatory gene expression. Understanding the role of beta-arrestins in regulation of TLR signaling pathways may provide novel insights into control mechanisms for inflammatory gene expression.


Assuntos
Arrestinas/fisiologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Interleucinas/biossíntese , Lipopolissacarídeos/farmacologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção , beta-Arrestina 2 , beta-Arrestinas
16.
Biochim Biophys Acta ; 1763(10): 1051-8, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16962188

RESUMO

Heterotrimeric Gi proteins play a role in lipopolysaccharide (LPS) and Staphylococcus aureus (SA) activated signaling leading to inflammatory mediator production. We hypothesized that genetic deletion of Gi proteins would alter cytokine and chemokine production induced by LPS and SA. LPS- and heat killed SA-induced cytokine and chemokine production in splenocytes from wild type (WT), Galpha(i2) (-/-) or Galpha(i1/3) (-/-) mice were investigated. LPS- or SA-induced production of TNFalpha, IL-6, IFNgamma, IL-12, IL-17, GM-CSF, MIP-1alpha, MCP-1, MIG and IP-10 were significantly increased (1.2 to 33 fold, p<0.05) in splenocytes harvested from Galpha(i2)(-/-) mice compared with WT mice. The effect of Galpha(i) protein depletion was remarkably isoform specific. In splenocytes from Galpha(i1/3) (-/-) mice relative to WT mice, SA-induced IL-6, IFNgamma, GM-CSF, and IP-10 levels were decreased (59% to 86%, p<0.05), whereas other LPS- or SA-stimulated cytokines and chemokines were not different relative to WT mice. LPS- and SA-induced production of KC were unchanged in both groups of the genetic deficient mice. Splenocytes from both Galpha(i2) (-/-) and Galpha(i1/3) (-/-) mice did not exhibit changes in TLR2 and TLR4 expression. Also analysis of splenic cellular composition by flow cytometry demonstrated an increase in splenic macrophages and reduced CD4 T cells in both Galpha(i2) (-/-) and Galpha(i1/3) (-/-) mice relative to WT mice. The disparate response of splenocytes from the Galpha(i2) (-/-) relative to Galpha(i1/3) (-/-) mice therefore cannot be attributed to major differences in spleen cellular composition. These data demonstrate that G(i2) and G(i1/3) proteins are both involved and differentially regulate splenocyte inflammatory cytokine and chemokine production in a highly Gi isoform specific manner in response to LPS and Gram-positive microbial stimuli.


Assuntos
Quimiocinas/biossíntese , Citocinas/biossíntese , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Lipopolissacarídeos/farmacologia , Baço/metabolismo , Staphylococcus aureus/fisiologia , Animais , Células Cultivadas , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Isoformas de Proteínas , Sensibilidade e Especificidade , Baço/citologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
17.
Shock ; 28(6): 722-726, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17621259

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated nuclear receptor with effects on inflammation, atherosclerosis, and apoptosis. The endogenous PPARgamma ligand, 15-deoxy-Delta12,14-PGJ2 (15d-PGJ2), and the synthetic ligand, ciglitazone, have anti-inflammatory properties in endothelial cells. In addition to PPARgamma-dependent effects on the anti-inflammatory process, it has been proposed that PPARgamma ligands may also inhibit the nuclear transcription factor kappaB (NFkappaB) pathway in a PPARgamma-independent manner. The purpose of this study was to compare the effects of 15d-PGJ2 and ciglitazone on the cytokine-induced activation of the NFkappaB pathway. Human umbilical vein endothelial cells (HUVECs) were transiently transfected with NFkappaB-luciferase or PPARgamma elements-luciferase reporter constructs for 48 h. The HUVECs were pretreated with 15d-PGJ2 or ciglitazone (30 microM) for 1 h, followed by a 4-h stimulation with tumor necrosis factor alpha (100 U/mL). Luciferase assay was performed to determine reporter activity. Additionally, HUVECs were transiently transfected with a dominant-negative mutant, which retains ligand and DNA binding but exhibits markedly reduced transactivation. Stimulation of HUVEC with tumor necrosis factor alpha increased NFkappaB activation while decreasing PPARgamma activity. Overexpression of a dominant-negative PPARgamma mutant prevented the inhibitory effect of ciglitazone on cytokine-induced NFkappaB activation in transfected human endothelial cells. Conversely, 15d-PGJ2 inhibited the cytokine-induced NFkappaB activation even in the absence of PPARgamma. Our data suggest that 15d-PGJ2 exerts direct inhibitory effects on the NFkappaB pathway through a PPARgamma-independent mechanism. On the contrary, the inhibitory effect of ciglitazone on the NFkappaB pathway seems to require PPARgamma activation.


Assuntos
Células Endoteliais/efeitos dos fármacos , NF-kappa B/metabolismo , PPAR gama/metabolismo , Prostaglandina D2/análogos & derivados , Tiazolidinedionas/farmacologia , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Selectina E/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Luciferases/genética , Luciferases/metabolismo , Mutação , NF-kappa B/genética , PPAR gama/genética , Prostaglandina D2/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
18.
Front Biosci ; 11: 2264-74, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16720313

RESUMO

Previous studies have demonstrated that bacterial lipopolysaccharide (LPS) and heat killed Staphylococcus aureus (SA) activation of inflammatory cells depended in part upon activation of heterotrimeric Gi proteins. It has also been shown that (1 --> 3) beta-D-glucan can suppress inflammatory cell activation by microbial products although the cellular mechanism of the glucan effect remains to be clearly defined. We hypothesized that Gi proteins function as a common convergent signaling pathway for both LPS and SA leading to monocyte mediator production. Additionally, we hypothesized that soluble glucan suppresses LPS and SA induced cytokine production via Gi protein coupled signaling. Human THP-1 promonocytic cells were pretreated with pertussis toxin (PTx, 100 ng/ml or 1 microgram/ml) 6 hours prior to stimulation with LPS (10 microgram/ml) and SA (10 microgram/ml) and/or soluble glucan (10 microgram/ml). Both LPS and SA significantly (p < 0.05) induced cytokine production IL-6 > TNF alpha > IL-1 beta > GM-CSF > IL-10 > IFN gamma. The induction of these cytokines was significantly (p < 0.05) suppressed by PTx. Glucan treatment alone had no effect on cytokine production but suppressed (P < 0.05) LPS and SA induced cytokines. PTx further augmented (p > 0.05) the inhibitory effect of glucan on the LPS and SA induced cytokine expression. The data support the hypothesis that Gi proteins function as a common signaling protein for both LPS and SA induction of pro-and anti-inflammatory cytokines and that soluble glucan effectively suppresses cytokine production to the microbial stimuli. In contrast, the effect of soluble glucan on inhibiting cellular activation by LPS and SA is Gi protein independent.


Assuntos
Citocinas/biossíntese , Proteínas de Ligação ao GTP/fisiologia , Lipopolissacarídeos/efeitos adversos , beta-Glucanas/metabolismo , Técnicas de Cultura de Células , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Humanos , Inflamação , Monócitos , Proteoglicanas , Choque Séptico/fisiopatologia , Transdução de Sinais , Infecções Estafilocócicas/imunologia , Staphylococcus aureus
19.
Shock ; 26(2): 146-53, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16878022

RESUMO

Peroxisome proliferator-activated receptor-gamma (PPARgamma) and liver X receptor-alpha (LXRalpha) are nuclear ligand-activated transcription factors, which regulate lipid metabolism and inflammation. Murine J774.2 macrophages were stimulated with Escherichia coli lipopolysaccharide (concentration, 10 microg/mL) with or without the PPARgamma ligand, 15-deoxy-Delta prostaglandin J2 (15d-PGJ2), or the LXRalpha ligands, 22(R)-hydroxycholesterol and T0901317 (concentration range, 0.01-10 micromol/L), alone or in combination. Nitric oxide (NO) metabolites and tumor necrosis factor alpha production, inducible NO synthase expression, and mitochondrial respiration were measured. When added to the cells as single agents, 15d-PGJ2, 22(R)-hydroxycholesterol, or T0901317 reduced the lipopolysaccharide-induced NO and tumor necrosis factor alpha production and the inducible NO synthase expression, and partially maintained mitochondrial respiration in a concentration-dependent manner. When added to the cells in combination at suboptimal concentrations, 15d-PGJ2 with 22(R)-hydroxycholesterol, or 15d-PGJ2 with T0901317, exerted anti-inflammatory effects similar to much higher concentrations (10,000-fold to 100,000-fold) of each ligand alone. The anti-inflammatory effects of these ligands, alone or in combination, were associated with reduction of nuclear factor-kappaB activation and with enhancement of PPARgamma DNA binding. LXRalpha expression was upregulated in response to 15d-PGJ2 and to the LXRalpha ligands when added alone or in combination. Immunoprecipitation experiments revealed that PPARgamma interacted with LXRalpha. Our data demonstrate that the PPARgamma ligand, 15d-PGJ2, and the LXRalpha ligands, 22(R)-hydroxycholesterol and T0901317, although binding to different nuclear receptors (i.e., PPARgamma and LXRalpha, respectively), affect mediator production through common cell signaling events and exert a synergistic potentiation in a combined treatment at suboptimal concentrations. Thus, our data suggest that PPARgamma and LXRalpha may interact in controlling the inflammatory response in macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Proteínas de Ligação a DNA/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , PPAR gama/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Sinergismo Farmacológico , Hidrocarbonetos Fluorados , Hidroxicolesteróis/farmacologia , Inflamação/tratamento farmacológico , Ligantes , Lipopolissacarídeos , Receptores X do Fígado , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores Nucleares Órfãos , PPAR gama/efeitos dos fármacos , PPAR gama/genética , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais , Sulfonamidas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
20.
Shock ; 26(1): 31-6, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16783195

RESUMO

Our previous studies have demonstrated that although LPS and Staphylococcus aureus induce homologous tolerance, they induce priming to each other instead of cross-tolerance. The phosphatidylinositol 3 (PI3) kinase pathway has been implicated in microbial signaling and inflammatory gene expression regulation. We hypothesized that LPS or S. aureus induced tolerance and priming responses to each other are PI3 kinase pathway-dependent. CD1 mice received intraperitoneal injections of 1% Biogel and were treated intraperitoneally with vehicle, LPS, or S. aureus (5 mg/kg) 3 days later. Peritoneal macrophages (MØ) were harvested 24 h later and exposed to vehicle or the PI3 kinase inhibitors wortmannin (10 nmol/L) or LY294002 (10 nmol/L) 1 h before in vitro stimulation with LPS or S. aureus (10 microg/mL). Both LPS and S. aureus significantly induced tumor necrosis factor alpha and thromboxane B2 synthesis (P < 0.05, n = 3) in naive cells. LPS and S. aureus induced homologous tolerance were associated with suppressed tumor necrosis factor alpha and thromboxane B2 levels but augmented interleukin 10 production. However, LPS and S. aureus induced priming to each other, as shown by augmented mediator production. Wortmannin and LY294002 reversed LPS tolerance yet had no effect on S. aureus tolerance. PI3 kinase blockade attenuated the priming responses to both LPS and S. aureus. Mice pretreated with LPS and challenged with LPS were protected. In contrast, mice pretreated with LPS and wortmannin demonstrated LPS tolerance reversal. These data suggest that PI3 kinase is essential for LPS induced homologous tolerance and reciprocal LPS and S. aureus induced priming responses.


Assuntos
Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Staphylococcus aureus , Androstadienos/farmacologia , Animais , Células Cultivadas , Cromonas/farmacologia , Camundongos , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Tromboxano B2/biossíntese , Fator de Necrose Tumoral alfa/biossíntese , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA