RESUMO
Psychologists have made substantial progress at developing empirically validated formal expressions of how people perceive, learn, remember, think, and know. In this article, we present an academic search engine for cognitive psychology that leverages computational expressions of human cognition (vector-space models of semantics) to represent and find articles in the psychological record. The method shows how psychological theory can be used to inform and aid the design of psychologically intuitive computer interfaces.
Assuntos
Cognição , Armazenamento e Recuperação da Informação/métodos , Ferramenta de Busca , Semântica , Humanos , Modelos Psicológicos , Teoria PsicológicaRESUMO
To simplify the problem of studying how people learn natural language, researchers use the artificial grammar learning (AGL) task. In this task, participants study letter strings constructed according to the rules of an artificial grammar and subsequently attempt to discriminate grammatical from ungrammatical test strings. Although the data from these experiments are usually analyzed by comparing the mean discrimination performance between experimental conditions, this practice discards information about the individual items and participants that could otherwise help uncover the particular features of strings associated with grammaticality judgments. However, feature analysis is tedious to compute, often complicated, and ill-defined in the literature. Moreover, the data violate the assumption of independence underlying standard linear regression models, leading to Type I error inflation. To solve these problems, we present AGSuite, a free Shiny application for researchers studying AGL. The suite's intuitive Web-based user interface allows researchers to generate strings from a database of published grammars, compute feature measures (e.g., Levenshtein distance) for each letter string, and conduct a feature analysis on the strings using linear mixed effects (LME) analyses. The LME analysis solves the inflation of Type I errors that afflicts more common methods of repeated measures regression analysis. Finally, the software can generate a number of graphical representations of the data to support an accurate interpretation of results. We hope the ease and availability of these tools will encourage researchers to take full advantage of item-level variance in their datasets in the study of AGL. We moreover discuss the broader applicability of the tools for researchers looking to conduct feature analysis in any field.
Assuntos
Aprendizagem , Linguística , Software , Humanos , IdiomaRESUMO
In most human breast cancers, tumor cell proliferation is estrogen dependent. Although hormone-responsive tumors initially respond to anti-estrogen therapies, most of them eventually develop resistance. Our goal was to identify alternative targets that might be regulated to control breast cancer progression. Sulforhodamine B assay was used to measure the viability of cultured human breast cancer cell lines exposed to various inhibitors. Protein expression in whole-cell extracts was determined by Western blotting. BT-474 tumor xenografts in nude mice were used for in vivo studies of tumor progression. RO 48-8071 ([4'-[6-(Allylmethylamino)hexyloxy]-4-bromo-2'-fluorobenzophenone fumarate]; RO), a small-molecule inhibitor of oxidosqualene cyclase (OSC, a key enzyme in cholesterol biosynthesis), potently reduced breast cancer cell viability. In vitro exposure of estrogen receptor (ER)-positive human breast cancer cells to pharmacological levels of RO or a dose close to the IC50 for OSC (nM) reduced cell viability. Administration of RO to mice with BT-474 tumor xenografts prevented tumor growth, with no apparent toxicity. RO degraded ERα while concomitantly inducing the anti-proliferative protein ERß. Two other cholesterol-lowering drugs, Fluvastatin and Simvastatin, were less effective in reducing breast cancer cell viability and were found not to induce ERß. ERß inhibition or knockdown prevented RO-dependent loss of cell viability. Importantly, RO had no effect on the viability of normal human mammary cells. RO is a potent inhibitor of hormone-dependent human breast cancer cell proliferation. The anti-tumor properties of RO appear to be in part due to an off-target effect that increases the ratio of ERß/ERα in breast cancer cells.
Assuntos
Antineoplásicos/farmacologia , Benzofenonas/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Colesterol/biossíntese , Transferases Intramoleculares/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Benzofenonas/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Concentração Inibidora 50 , CamundongosRESUMO
Physiological studies of intact crypt epithelium have been limited by problems of accessibility in vivo and dedifferentiation in standard primary culture. Investigations of murine intestinal stem cells have recently yielded a primary intestinal culture in three-dimensional gel suspension that recapitulates crypt structure and epithelial differentiation (Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, Van Es JH, Abo A, Kujala P, Peters PJ, Clevers H. Nature 459: 262-265, 2009). We investigated the utility of murine intestinal crypt cultures (termed "enteroids") for physiological studies of crypt epithelium by focusing on the transport activity of the cystic fibrosis transmembrane conductance regulator Cftr. Enteroids had multiple crypts with well-differentiated goblet and Paneth cells that degranulated on exposure to the muscarinic agonist carbachol. Modified growth medium provided a crypt proliferation rate, as measured by 5-ethynyl-2'-deoxyuridine labeling, which was similar to proliferation in vivo. Immunoblots demonstrated equivalent Cftr expression in comparisons of freshly isolated crypts with primary and passage 1 enteroids. Apparent enteroid differences in mRNA expression of other transporters were primarily associated with villous epithelial contamination of freshly isolated crypts. Microelectrode analysis revealed cAMP-stimulated membrane depolarization in enteroid epithelium from wild-type (WT) but not Cftr knockout (KO) mice. Morphological and microfluorimetric studies, respectively, demonstrated Cftr-dependent cell shrinkage and lower intracellular pH in WT enteroid epithelium in contrast to Cftr KO epithelium or WT epithelium treated with Cftr inhibitor 172. We conclude that crypt epithelium of murine enteroids exhibit Cftr expression and activity that recapitulates crypt epithelium in vivo. Enteroids provide a primary culture model that is suitable for physiological studies of regenerating crypt epithelium.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Mucosa Intestinal/citologia , Mucosa Intestinal/fisiologia , Intestino Delgado/citologia , Intestino Delgado/fisiologia , Animais , Camundongos , Camundongos Endogâmicos CFTR , Camundongos Knockout , Técnicas de Cultura de Órgãos/métodosRESUMO
BACKGROUND: Approximately 15-20% of all human breast cancers are classified as triple-negative because they lack estrogen and progesterone receptors and Her-2-neu, which are commonly targeted by chemotherapeutic drugs. New treatment strategies are therefore urgently needed to combat triple-negative breast cancers (TNBCs). Almost 80% of the triple-negative tumors express mutant p53 (mtp5), a functionally defective tumor suppressor protein. Whereas wild-type p53 (wtp53) promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor-dependent angiogenesis, mtp53 fails to regulate these functions, resulting in tumor vascularization, growth, resistance to chemotherapy, and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for suppressing TNBC metastasis. METHODS: APR-246 is a small-molecule drug that reactivates mtp53, thereby restoring p53 function. In this study, we sought to determine whether administration of APR-246, either alone or in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits stem cell-like characteristics of tumor cells and migration in vitro, and metastasis of human mtp53-expressing TNBC cells to the lungs in mouse models. RESULTS: APR-246 reduced both the stem cell-like properties and migration of TNBC cells in vitro. In mouse models, administration of either APR-246 or 2aG4 reduced metastasis of TNBC cells to the lungs; a combination of the two diminished lung metastasis to the same extent as either agent alone. Combination treatment significantly reduced the incidence of lung metastasis compared either single agent alone. CONCLUSION: Metastasis of human mtp53-expressing TNBC cells to the lungs of nude mice is inhibited by the treatment that combines activation of mtp53 with targeting of phosphatidylserine residues on tumor blood vessels. We contend therefore that our findings strongly support the use of combination treatment involving mtp53 activation and immunotherapy in patients with TNBC.
RESUMO
Metastatic breast cancer is typically an extremely aggressive cancer with poor prognosis. Metastasis requires the orchestration of homeostatic factors and cellular programs, many of which are potential therapeutic targets. Luteolin (2-[3,4-dihydroxyphenyl]-5,7-dihydroxy-4-chromenone), is a naturally occurring flavonoid found in fruits and vegetables that exhibits many anticancer properties. Luteolin obstructs metastasis through both direct and indirect mechanisms. For instance, luteolin may suppress breast cancer invasion by acting as an antiangiogenic therapeutic inhibiting VEGF production and its receptor's activity. Furthermore, luteolin decreases epithelial-mesenchymal transition markers and metastatic proclivity. Luteolin also acts as an antiproliferative by suppressing receptor tyrosine-kinase activity and apoptosis, both of which could prevent incipient colonization of breast cancer. Many of these antimetastatic characteristics accredited to luteolin are likely functionally related. For instance, the PI3K/Akt pathway, which is impeded by luteolin, has several downstream programs involved in increased proliferation, survival, and metastatic potential in breast cancer. In this review, luteolin's ability to ameliorate breast cancer is summarized. The paper also offers insight into the molecular mechanisms by which luteolin may suppress breast cancer metastasis.
RESUMO
Most breast cancer-related deaths from triple-negative breast cancer (TNBC) occur following metastasis of cancer cells and development of tumors at secondary sites. Because TNBCs lack the three receptors targeted by current chemotherapeutic regimens, they are typically treated with extremely aggressive and highly toxic non-targeted treatment strategies. Women with TNBC frequently develop metastatic lesions originating from drug-resistant residual cells and have poor prognosis. For this reason, novel therapeutic strategies that are safer and more effective are sought. Luteolin (LU) is a naturally occurring, non-toxic plant compound that has proven effective against several types of cancer. With this in mind, we conducted in vivo and in vitro studies to determine whether LU might suppress metastasis of TNBC. In an in vivo mouse metastasis model, LU suppressed metastasis of human MDA-MB-435 and MDA-MB-231 (4175) LM2 TNBC cells to the lungs. In in vitro assays, LU inhibited cell migration and viability of MDA-MB-435 and MDA-MB-231 (4175) LM2 cells. Further, LU induced apoptosis in MDA-MB-231 (4175) LM2 cells. Relatively low levels (10 µM) of LU significantly inhibited vascular endothelial growth factor (VEGF) secretion in MDA-MB-231 (4175) LM2 cells, suggesting that it has the ability to suppress a potent angiogenic and cell survival factor. In addition, migration of MDA-MB-231 (4175) LM2 cells was inhibited upon exposure to an antibody against the VEGF receptor, KDR, but not by exposure to a VEGF165 antibody. Collectively, these data suggest that the anti-metastatic properties of LU may, in part, be due to its ability to block VEGF production and KDR-mediated activity, thereby inhibiting tumor cell migration. These studies suggest that LU deserves further investigation as a potential treatment option for women with TNBC.
RESUMO
Clinical trials and studies have shown that combination estrogen/progestin hormone replacement therapy, but not estrogen therapy alone or placebo, increases breast cancer risk in postmenopausal women. Using animal models, we have previously shown that both natural and synthetic progestins (including medroxyprogesterone acetate [MPA], a synthetic progestin used widely in the clinical setting) accelerate the development of breast tumors in vivo and increase their metastasis to lymph nodes. Based on these observations, we have hypothesized that progestin-induced breast cancer tumor growth and metastasis may be mediated by an enrichment of the cancer stem cell (CSC) pool. In this study, we used T47-D and BT-474 hormone-responsive human breast cancer cells to examine the effects of progestin on phenotypic and functional markers of CSCs in vitro. Both natural and synthetic progestins (10 nM) significantly increased protein expression of CD44, an important CSC marker in tumor cells. MPA increased the levels of both CD44 variants v3 and v6 associated with stem cell functions. This induction of CD44 was blocked by the antiprogestin RU-486, suggesting that this process is progesterone receptor (PR) dependent. CD44 induction was chiefly progestin dependent. Because RU-486 can bind other steroid receptors, we treated PR-negative T47-DCO-Y cells with MPA and found that MPA failed to induce CD44 protein expression, confirming that PR is essential for progestin-mediated CD44 induction in T47-D cells. Further, MPA treatment of T47-D cells significantly increased the activity of aldehyde dehydrogenase (ALDH), another CSC marker. Finally, two synthetic progestins, MPA and norethindrone, significantly increased the ability of T47-D cells to form mammospheres, suggesting that enrichment of the CD44high, ALDHbright subpopulation of cancer cells induced by MPA exposure is of functional significance. Based on our observations, we contend that exposure of breast cancer cells to synthetic progestins leads to an enrichment of the CSC pool, supporting the development of progestin-accelerated tumors in vivo.
RESUMO
Postmenopausal women undergoing hormone-replacement therapy containing both progestins and estrogens are at an increased risk of developing breast cancer compared with women taking estrogen alone. We recently demonstrated that medroxyprogesterone acetate, a progestin commonly used for hormone-replacement therapy, accelerates development of mammary carcinogenesis in 7,12-dimethylbenz(a)anthracenetreated Sprague-Dawley rats. Synthetic antiprogestins used to block the deleterious effects of progestins, are themselves associated with toxic side-effects. In order to circumvent this, we used the aforementioned model to identify less toxic natural compounds that may prevent the development of progestin-accelerated tumors. Luteolin, a naturally-occurring flavonoid commonly found in fruits and vegetables, has previously been shown to possess anticancer properties. In our studies, both low (1 mg/kg) and high (25 mg/kg) doses of luteolin significantly suppressed progestin-dependent increases in tumor incidence, while increasing tumor latency and reducing the occurrence of large (>300 mm3) mammary tumors. However, an intermediate dose of luteolin (10 mg/kg), while suppressing the development of large tumors, did not affect either tumor incidence or latency. Immunohistochemical analysis of tumor tissues revealed that all concentrations of luteolin (1, 10, and 25 mg/kg) significantly reduced levels of VEGF within tumors. The suppressive effects of luteolin on tumor incidence and volume, together with its ability to reduce VEGF and blood vessels, persisted even after treatment was terminated. This suggests that luteolin possesses antiangiogenic properties which could mechanistically explain its capacity to control tumor progression. Thus luteolin may be a valuable, non-toxic, naturally-occurring anticancer compound which may potentially be used to combat progestin-accelerated mammary tumors.
Assuntos
Antineoplásicos/farmacologia , Luteolina/farmacologia , Neoplasias Mamárias Experimentais/patologia , Acetato de Medroxiprogesterona/toxicidade , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Terapia de Reposição de Estrogênios/efeitos adversos , Feminino , Imuno-Histoquímica , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/biossínteseRESUMO
PURPOSE: Clinical trials and epidemiological evidence have shown that combined estrogen/progestin hormone replacement therapy, but not estrogen therapy alone, increases breast cancer risk in post-menopausal women. Previously we have shown that natural and synthetic progestins, including the widely used synthetic progestin medroxyprogesterone acetate (MPA), increase production of a potent angiogenic factor, vascular endothelial growth factor (VEGF), in human breast cancer cells, potentially providing an explanation for progestin's mechanism of action. Here, we tested the effects of luteolin (LU), a flavonoid commonly found in fruits and vegetables, on inhibiting progestin-dependent VEGF induction and angiogenesis in human breast cancer cells, inhibiting stem cell-like characteristics, as well as breast cancer cell xenograft tumor growth in vivo and expression of angiogenesis markers. METHODS: Viability of both T47-D and BT-474 cells was measured using sulforhodamine B assays. Enzyme-linked immunosorbent assays were used to monitor VEGF secretion from breast cancer cells. Progestin-dependent xenograft tumor growth was used to determine LU effects in vivo. CD31 immunohistochemistry was used to determine blood-vessel density in xenograft tumors. CD44 expression, aldehyde dehydrogenase activity, and mammosphere-formation assays were used to monitor stem cell-like characteristics of breast cancer cells. RESULTS: Luteolin treatment reduced breast cancer cell viability, progestin-dependent VEGF secretion from breast cancer cells, and growth of MPA-dependent human breast cancer cell xenograft tumors in nude mice. LU treatment also decreased xenograft tumor VEGF expression and blood-vessel density. Furthermore, LU blocked MPA-induced acquisition of stem cell-like properties by breast cancer cells. CONCLUSIONS: Luteolin effectively blocks progestin-dependent human breast cancer tumor growth and the stem cell-like phenotype in human breast cancer cells.
RESUMO
A method for producing synthetic debris similar to the melt glass produced by nuclear surface testing is demonstrated. Melt glass from the first nuclear weapon test (commonly referred to as trinitite) is used as the benchmark for this study. These surrogates can be used to simulate a variety of scenarios and will serve as a tool for developing and validating forensic analysis methods.