RESUMO
A significant number of pregnancies occur at advanced maternal age (>35 yr), which is a risk factor for pregnancy complications. Healthy pregnancies require massive hemodynamic adaptations, including an increased blood volume and cardiac output. There is growing evidence that these cardiovascular adaptations are impaired with age, however, little is known about maternal cardiac function with advanced age. We hypothesized that cardiac adaptations to pregnancy are impaired with advanced maternal age. Younger (4 mo; â¼early reproductive maturity in humans) and aged (9 mo; â¼35 yr in humans) pregnant Sprague-Dawley rats were assessed and compared with age-matched nonpregnant controls. Two-dimensional echocardiographic images were obtained (ultrasound biomicroscopy; under anesthesia) on gestational day 19 (term = 22 days) and compared with age-matched nonpregnant rats (n = 7-9/group). Left ventricular structure and function were assessed using short-axis images and transmitral Doppler signals. During systole, left ventricular anterior wall thickness increased with age in the nonpregnant rats, but there was no age-related difference between the pregnant groups. There were no significant pregnancy-associated differences in left ventricular wall thickness. Calculated left ventricular mass increased with age in nonpregnant rats and increased with pregnancy only in young rats. Compared with young pregnant rats, the aortic ejection time of aged pregnant rats was greater and Tei index was lower. Overall, the greater aortic ejection time and lower Tei index with age in pregnant rats suggest mildly altered cardiac adaptations to pregnancy with advanced maternal age, which may contribute to adverse outcomes in advanced maternal age pregnancies.NEW & NOTEWORTHY We demonstrated that even before the age of reproductive senescence, rats show signs of age-related alterations in cardiac structure that suggests increased cardiac work. Our data also demonstrate, using an in vivo echocardiographic approach, that advanced maternal age in a rat model is associated with altered cardiac function and structure relative to younger pregnant controls.
Assuntos
Ecocardiografia , Coração , Gravidez , Feminino , Humanos , Ratos , Animais , Idade Materna , Ratos Sprague-Dawley , Coração/diagnóstico por imagem , Débito CardíacoRESUMO
Hypercholesterolemia in pregnancy is a physiological process required for normal fetal development. In contrast, excessive pregnancy-specific hypercholesterolemia increases the risk of complications, such as preeclampsia. However, the underlying mechanisms are unclear. Toll-like receptor 4 (TLR4) is a membrane receptor modulated by high cholesterol levels, leading to endothelial dysfunction; but whether excessive hypercholesterolemia in pregnancy activates TLR4 is not known. We hypothesized that a high cholesterol diet (HCD) during pregnancy increases TLR4 activity in uterine arteries, leading to uterine artery dysfunction. Sprague Dawley rats were fed a control diet (n=12) or HCD (n=12) during pregnancy (gestational day 6-20). Vascular function was assessed in main uterine arteries using wire myography (vasodilation to methacholine and vasoconstriction to phenylephrine; with and without inhibitors for mechanistic pathways) and pressure myography (biomechanical properties). Exposure to a HCD during pregnancy increased maternal blood pressure, induced proteinuria, and reduced the fetal-to-placental weight ratio for both sexes. Excessive hypercholesterolemia in pregnancy also impaired vasodilation to methacholine in uterine arteries, whereby at higher doses, methacholine caused vasoconstriction instead of vasodilation in only the HCD group, which was prevented by inhibition of TLR4 or prostaglandin H synthase 1. Endothelial nitric oxide synthase expression and nitric oxide levels were reduced in HCD compared with control dams. Vasoconstriction to phenylephrine and biomechanical properties were similar between groups. In summary, excessive hypercholesterolemia in pregnancy impairs uterine artery function, with TLR4 activation as a key mechanism. Thus, TLR4 may be a target for therapy development to prevent adverse perinatal outcomes in complicated pregnancies.
Assuntos
Hipercolesterolemia , Hiperlipidemias , Animais , Feminino , Masculino , Gravidez , Ratos , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Cloreto de Metacolina/metabolismo , Fenilefrina/farmacologia , Fenilefrina/metabolismo , Placenta , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo , Artéria Uterina/metabolismo , Vasodilatação/fisiologiaRESUMO
Prenatal hypoxia is associated with enhanced susceptibility to cardiac ischemia-reperfusion (I/R) injury in adult offspring, however, the mechanisms remain to be fully investigated. Endothelin-1 (ET-1) is a vasoconstrictor that acts via endothelin A (ETA) and endothelin B (ETB) receptors and is essential in maintaining cardiovascular (CV) function. Prenatal hypoxia alters the ET-1 system in adult offspring possibly contributing to I/R susceptibility. We previously showed that ex vivo application of ETA antagonist ABT-627 during I/R prevented the recovery of cardiac function in prenatal hypoxia-exposed males but not in normoxic males nor normoxic or prenatal hypoxia-exposed females. In this follow-up study, we examined whether placenta-targeted treatment with a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ) during hypoxic pregnancies could alleviate this hypoxic phenotype observed in adult male offspring. We used a rat model of prenatal hypoxia where pregnant Sprague-Dawley rats were exposed to hypoxia (11% O2) from gestational days (GD) 15-21 after injection with 100 µL saline or nMitoQ (125 µM) on GD15. Male offspring were aged to 4 mo and ex vivo cardiac recovery from I/R was assessed. Offspring born from hypoxic pregnancies and treated with nMitoQ had increased cardiac recovery from I/R in the presence of ABT-627 compared with their untreated counterparts where ABT-627 prevented recovery. Cardiac ETA levels were increased in males born from hypoxic pregnancies with nMitoQ treatment compared with saline controls (Western blotting). Our data indicate a profound impact of placenta-targeted treatment to prevent an ETA receptor cardiac phenotype observed in adult male offspring exposed to hypoxia in utero.NEW & NOTEWORTHY In this follow-up study, we showed a complete lack of recovery from I/R injury after the application of an ETA receptor antagonist (ABT-627) in adult male offspring exposed to hypoxia in utero while maternal treatment with nMitoQ during prenatal hypoxia exposure prevented this effect. Our data suggest that nMitoQ treatment during hypoxic pregnancies may prevent a hypoxic cardiac phenotype in adult male offspring.
Assuntos
Hipóxia , Receptores de Endotelina , Gravidez , Feminino , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Atrasentana , Seguimentos , Hipóxia/complicações , Placenta , Endotelina-1RESUMO
Fetal hypoxia, a major consequence of complicated pregnancies, impairs offspring cardiac tolerance to ischemia-reperfusion (I/R) insult; however, the mechanisms remain unknown. Endothelin-1 (ET-1) signaling through the endothelin A receptors (ETA) is associated with cardiac dysfunction. We hypothesized that prenatal hypoxia exacerbates cardiac susceptibility to I/R via increased ET-1 and ETA levels, whereas ETA inhibition ameliorates this. Pregnant Sprague-Dawley rats were exposed to normoxia (21% O2) or hypoxia (11% O2) on gestational days 15-21. Offspring were aged to 4 mo, and hearts were aerobically perfused or subjected to ex vivo I/R, with or without preinfusion with an ETA antagonist (ABT-627). ET-1 levels were assessed with ELISA in aerobically perfused and post-I/R left ventricles (LV). ETA and ETB levels were assessed by Western blotting in nonperfused LV. As hypothesized, ABT-627 infusion tended to improve post-I/R recovery in hypoxic females (P = 0.0528); however, surprisingly, ABT-627 prevented post-I/R recovery only in the hypoxic males (P < 0.001). ET-1 levels were increased in post-I/R LV in both sexes regardless of the prenatal exposure (P < 0.01). ETA expression was similar among all groups, whereas ETB (isoform C) levels were decreased in prenatally hypoxic females (P < 0.05). In prenatally hypoxic males, ETA signaling may be essential for tolerance to I/R, whereas in prenatally hypoxic females, ETA may contribute to cardiac dysfunction. Our data illustrate that understanding the prenatal history has critical implications for treatment strategies in adult chronic diseases.NEW & NOTEWORTHY We demonstrated that prenatal hypoxia (a common condition of pregnancy) can have profound differential effects on treatment strategies in adult cardiovascular disease. Our data using a rat model of prenatal hypoxia demonstrated that, as adults, although inhibition of endothelin (ETA) receptors before an ex vivo cardiac ischemic insult improved recovery in females, it strikingly prevented recovery in males. Our data indicate a sex-specific effect of prenatal hypoxia on the cardiac ET-1 system in adult offspring.
Assuntos
Cardiopatias , Hipóxia , Animais , Atrasentana , Endotelina-1 , Endotelinas , Feminino , Isquemia/complicações , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Receptor de Endotelina ARESUMO
Pregnancy complications associated with prenatal hypoxia lead to increased placental oxidative stress. Previous studies suggest that prenatal hypoxia can reduce mitochondrial respiratory capacity and mitochondrial fusion, which could lead to placental dysfunction and impaired fetal development. We developed a placenta-targeted treatment strategy using a mitochondrial antioxidant, MitoQ, encapsulated into nanoparticles (nMitoQ) to reduce placental oxidative stress and (indirectly) improve fetal outcomes. We hypothesized that, in a rat model of prenatal hypoxia, nMitoQ improves placental mitochondrial function and promotes mitochondrial fusion in both male and female placentae. Pregnant rats were treated with saline or nMitoQ on gestational day (GD) 15 and exposed to normoxia (21% O2 ) or hypoxia (11% O2 ) from GD15-21. On GD21, male and female placental labyrinth zones were collected for mitochondrial respirometry assessments, mitochondrial content, and markers of mitochondrial biogenesis, fusion and fission. Prenatal hypoxia reduced complex IV activity and fusion in male placentae, while nMitoQ improved complex IV activity in hypoxic male placentae. In female placentae, prenatal hypoxia decreased respiration through the S-pathway (complex II) and increased N-pathway (complex I) respiration, while nMitoQ increased fusion in hypoxic female placentae. No changes in mitochondrial content, biogenesis or fission were found. In conclusion, nMitoQ improved placental mitochondrial function in male and female placentae from fetuses exposed to prenatal hypoxia, which may contribute to improved placental function. However, the mechanisms (ie, changes in mitochondrial respiratory capacity and mitochondrial fusion) were distinct between the sexes. Treatment strategies targeted against placental oxidative stress could improve placental mitochondrial function in complicated pregnancies.
Assuntos
Antioxidantes/uso terapêutico , Hipóxia Fetal/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Nanopartículas/química , Compostos Organofosforados/uso terapêutico , Placenta/efeitos dos fármacos , Ubiquinona/análogos & derivados , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Respiração Celular , Feminino , Masculino , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/farmacologia , Placenta/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Ubiquinona/administração & dosagem , Ubiquinona/farmacologia , Ubiquinona/uso terapêuticoRESUMO
Advanced maternal age (≥35 years) is associated with pregnancy complications. Aging impairs vascular reactivity and increases vascular stiffness. We hypothesized that uterine artery adaptations to pregnancy are impaired with advanced age. Uterine arteries of nonpregnant and pregnant (gestational day 20) young (4 months) and aged (9 months; ~35 years in humans) Sprague-Dawley rats were isolated. Functional (myogenic tone, n = 6−10/group) and mechanical (circumferential stress-strain, n = 10−24/group) properties were assessed using pressure myography and further assessment of elastin and collagen (histology, n = 4−6/group), and matrix metalloproteinase-2 (MMP-2, zymography, n = 6/group). Aged dams had worse pregnancy outcomes, including smaller litters and fetal weights (both p < 0.0001). Only in arteries of pregnant young dams did higher pressures (>100 mmHg) cause forced vasodilation. Across the whole pressure range (4−160 mmHg), myogenic behavior was enhanced in aged vs. young pregnant dams (p = 0.0010). Circumferential stress and strain increased with pregnancy in young and aged dams (p < 0.0001), but strain remained lower in aged vs. young dams (p < 0.05). Arteries from young nonpregnant rats had greater collagen:elastin ratios than the other groups (p < 0.05). In aged rats only, pregnancy increased MMP-2 active capacity. Altered functional and structural vascular adaptations to pregnancy may impair fetal growth and development with advanced maternal age.
Assuntos
Metaloproteinase 2 da Matriz , Artéria Uterina , Animais , Colágeno , Elastina , Feminino , Humanos , Idade Materna , Gravidez , Ratos , Ratos Sprague-DawleyRESUMO
Offspring born from complicated pregnancies are at greater risk of cardiovascular disease in adulthood. Prenatal hypoxia is a common pregnancy complication that results in placental oxidative stress and impairs fetal development. Adult offspring exposed to hypoxia during fetal life are more susceptible to develop cardiac dysfunction, and show decreased cardiac tolerance to an ischemia/reperfusion (I/R) insult. To improve offspring cardiac outcomes, we have assessed the use of a placenta-targeted intervention during hypoxic pregnancies, by encapsulating the mitochondrial antioxidant MitoQ into nanoparticles (nMitoQ). We hypothesized that maternal nMitoQ treatment during hypoxic pregnancies improves cardiac tolerance to I/R insult in adult male and female offspring. Pregnant Sprague-Dawley rats were exposed to normoxia (21 % O2) or hypoxia (11 % O2) from gestational day 15-20, after injection with 100 µL saline or nMitoQ (125 µM) on GD15 (n=6-8/group). Male and female offspring were aged to 4 months. Both male and female offspring from hypoxic pregnancies showed reduced cardiac tolerance to I/R (assessed ex vivo using the isolated working heart technique) which was ameliorated by nMitoQ treatment. To identify potential molecular mechanisms for the changes in cardiac tolerance to I/R, cardiac levels/phosphorylation of proteins important for intracellular Ca2+ cycling were assessed with Western blotting. In prenatally hypoxic male offspring, improved cardiac recovery from I/R by nMitoQ was accompanied by increased cardiac phospholamban and phosphatase 2Ce levels, and a trend to decreased Ca2+/calmodulin-dependent protein kinase IIδ phosphorylation. In contrast, in female offspring, nMitoQ treatment in hypoxic pregnancies increased phospholamban and protein kinase Cε phosphorylation. Maternal nMitoQ treatment improves cardiac tolerance to I/R insult in adult offspring and thus has the potential to improve the later-life trajectory of cardiovascular health of adult offspring born from pregnancies complicated by prenatal hypoxia.
Assuntos
Doenças Cardiovasculares/metabolismo , Hipóxia/metabolismo , Compostos Organofosforados/administração & dosagem , Placenta/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Traumatismo por Reperfusão/metabolismo , Ubiquinona/análogos & derivados , Fatores Etários , Animais , Antioxidantes/administração & dosagem , Doenças Cardiovasculares/prevenção & controle , Feminino , Hipóxia/tratamento farmacológico , Masculino , Nanopartículas/administração & dosagem , Placenta/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Ubiquinona/administração & dosagemRESUMO
NEW FINDINGS: What is the central question of this study? Does treatment of hypoxic dams with a placenta-targeted antioxidant prevent the release of placenta-derived factors that impair maturation or growth of fetal cardiomyocytes in vitro? What is the main finding and its importance? Factors released from hypoxic placentae impaired fetal cardiomyocyte maturation (induced terminal differentiation) and growth (increased cell size) in vitro, which was prevented by maternal treatment with a placenta-targeted antioxidant (nMitoQ). Moreover, there were no sex differences in the effects of placental factors on fetal cardiomyocyte maturation and growth. Overall, our data suggest that treatment targeted against placental oxidative stress could prevent fetal programming of cardiac diseases via the release of placental factors. ABSTRACT: Pregnancy complications associated with placental oxidative stress may impair fetal organ development through the release of placenta-derived factors into the fetal circulation. We assessed the effect of factors secreted from placentae previously exposed to prenatal hypoxia on fetal cardiomyocyte development and developed a treatment strategy that targets placental oxidative stress by encapsulating the antioxidant MitoQ into nanoparticles (nMitoQ). We used a rat model of prenatal hypoxia (gestational day (GD) 15-21), which was treated with saline or nMitoQ on GD15. On GD21, placentae were harvested, placed in culture, and conditioned medium (containing placenta-derived factors) was collected after 24 h. This conditioned medium was then added to cultured cardiomyocytes from control dam fetuses. Conditioned medium from prenatally hypoxic placentae increased the percentage of binucleated cardiomyocytes (marker of terminal differentiation) and the size of mononucleated and binucleated cardiomyocytes (sign of hypertrophy), effects that were prevented by nMitoQ treatment. Our data suggest that factors derived from placentae previously exposed to prenatal hypoxia lead to abnormal fetal cardiomyocyte development, and show that treatment against placental oxidative stress may prevent fetal programming of cardiac disease.
Assuntos
Antioxidantes/farmacologia , Desenvolvimento Fetal/efeitos dos fármacos , Hipóxia/tratamento farmacológico , Miócitos Cardíacos/fisiologia , Placenta/fisiologia , Animais , Células Cultivadas , Meios de Cultivo Condicionados , Feminino , Masculino , Compostos Organofosforados/farmacologia , Estresse Oxidativo , Gravidez , Ratos , Ratos Sprague-Dawley , Ubiquinona/análogos & derivados , Ubiquinona/farmacologiaRESUMO
The Developmental Origins of Health and Disease (DOHaD) theory states that a sub-optimal prenatal and early postnatal environment during development leads to an increased risk of long-term development of adult chronic diseases. Developmental programming of disease has the potential to greatly impact the health of our population. Therefore, research has focused on the development of primary treatment strategies and/or therapeutic interventions for individuals who are at increased risk, with the objective to reverse or prevent later life onset of chronic disease in the offspring born from complicated pregnancies. Many studies have focused on systemic treatments and/or interventions in complicated pregnancies to improve offspring outcomes. However, there are limitations to systemic maternal/prenatal treatments, as most of the treatments are able to cross the placenta and have potential adverse off-target effects on the developing fetus. The placenta serves as the primary interface between mother and fetus, and placental dysfunction in complicated pregnancies has been associated with impaired fetal development and negative impact on offspring health. Therefore, recent research has focused on treatment strategies that specifically target the placenta to improve placental function and prevent passage of prenatal therapeutics and/or treatments into the fetal circulation, thus avoiding any potential adverse off-target effects on the fetus. This article reviews the currently available knowledge on treatment strategies and/or therapeutics that specifically target the placenta with the goal of improving pregnancy outcomes with a focus on long-term health of the offspring born of complicated pregnancies.
Assuntos
Desenvolvimento Fetal/efeitos dos fármacos , Terapia Genética , Placenta/efeitos dos fármacos , Complicações na Gravidez/terapia , Animais , Portadores de Fármacos , Composição de Medicamentos , Feminino , Técnicas de Transferência de Genes , Terapia Genética/efeitos adversos , Humanos , Exposição Materna , Troca Materno-Fetal/efeitos dos fármacos , Placenta/fisiopatologia , Gravidez , Complicações na Gravidez/diagnóstico , Complicações na Gravidez/genética , Complicações na Gravidez/fisiopatologia , Efeitos Tardios da Exposição Pré-NatalRESUMO
Delaying pregnancy, which is on the rise, may increase the risk of cardiovascular disease in both women and their children. The physiological mechanisms that lead to these effects are not fully understood but may involve inadequate adaptations of the maternal cardiovascular system to pregnancy. Indeed, there is abundant evidence in the literature that a fetus developing in a suboptimal in utero environment (such as in pregnancies complicated by fetal growth restriction, preterm birth, and/or preeclampsia) is at an increased risk of cardiovascular disease in adulthood, the developmental origins of health and disease theory. Although women of advanced age are at a significantly increased risk of pregnancy complications, there is limited information as to whether advanced maternal age constitutes an added stressor on the prenatal environment of the fetus, and whether or not this is secondary to impaired cardiovascular function during pregnancy. This review summarizes the current literature available on the impact of advanced maternal age on cardiovascular adaptations to pregnancy and the role of maternal age on long-term health risks for both the mother and offspring.
Assuntos
Sistema Cardiovascular/fisiopatologia , Hemodinâmica , Idade Materna , Saúde Materna , Placenta/irrigação sanguínea , Complicações Cardiovasculares na Gravidez/etiologia , Efeitos Tardios da Exposição Pré-Natal , Adaptação Fisiológica , Adulto , Animais , Sistema Cardiovascular/crescimento & desenvolvimento , Feminino , Nível de Saúde , Humanos , Pessoa de Meia-Idade , Circulação Placentária , Gravidez , Complicações Cardiovasculares na Gravidez/fisiopatologia , Medição de Risco , Fatores de RiscoRESUMO
KEY POINTS: Advanced maternal age increases the risk of pregnancy complications such as fetal growth restriction, hypertension and premature birth. Offspring born from compromised pregnancies are at increased risk of cardiovascular disease as adults. However, the effect of advanced maternal age on later-onset disease in offspring has not been investigated. In adulthood, male but not female offspring born to dams of advanced maternal age showed impaired recovery from cardiac ischaemia/reperfusion injury. Endothelium-dependent relaxation was also impaired in male but not female offspring born from aged dams. Oxidative stress may play a role in the developmental programming of cardiovascular disease in this model. Given the increasing trend toward delayed parenthood, these findings have significant population and health care implications and warrant further investigation. ABSTRACT: Exposure to prenatal stressors, including hypoxia, micro- and macronutrient deficiency, and maternal stress, increases the risk of cardiovascular disease in adulthood. It is unclear whether being born from a mother of advanced maternal age (≥35 years old) may also constitute a prenatal stress with cardiovascular consequences in adulthood. We previously demonstrated growth restriction in fetuses from a rat model of advanced maternal age, suggesting exposure to a compromised in utero environment. Thus, we hypothesized that male and female offspring from aged dams would exhibit impaired cardiovascular function as adults. In 4-month-old offspring, we observed impaired endothelium-dependent relaxation in male (P < 0.05) but not female offspring born from aged dams. The anti-oxidant polyethylene glycol superoxide dismutase improved relaxation only in arteries from male offspring of aged dams (ΔEmax : young dam -1.63 ± 0.80 vs. aged dam 11.75 ± 4.23, P < 0.05). Furthermore, endothelium-derived hyperpolarization-dependent relaxation was reduced in male but not female offspring of aged dams (P < 0.05). Interestingly, there was a significant increase in nitric oxide contribution to relaxation in females born from aged dams (ΔEmax : young dam -24.8 ± 12.1 vs. aged dam -68.7 ± 7.7, P < 0.05), which was not observed in males. Recovery of cardiac function following an ischaemia-reperfusion insult in male offspring born from aged dams was reduced by â¼57% (P < 0.001), an effect that was not evident in female offspring. These data indicate that offspring born from aged dams have an altered cardiovascular risk profile that is sex-specific. Given the increasing trend toward delaying pregnancy, these findings may have significant population and health care implications and warrant further investigation.
Assuntos
Doenças Cardiovasculares/fisiopatologia , Endotélio Vascular/fisiologia , Idade Materna , Envelhecimento/fisiologia , Animais , Pressão Sanguínea , Feminino , Coração/fisiologia , Masculino , Estresse Oxidativo , Gravidez , RatosRESUMO
Pregnancy at an advanced maternal age has an increased risk of complications for both the mothers and their offspring. We have previously shown that advanced maternal age in a rat model leads to poor fetal outcomes, maternal vascular dysfunction, and hypertension, concordant with findings in humans. Moreover, offspring from aged dams had sex-specific cardiovascular dysfunction in young adulthood. However, the detrimental impact of aging on the cardiovascular system of the offspring in this model is unknown. We hypothesized that offspring born to aged dams (9.5-10 mo old) would have impaired cardiovascular function at 12 mo of age. Echocardiographic data revealed signs of mild left ventricular diastolic dysfunction in only male offspring from aged dams [isovolumetric relaxation time: 34.27 ± 2.04 in the young dam group vs. 27.61 ± 0.99 ms in the aged dam group, P < 0.01; mitral annular velocity ratio ( E'/ A'): 1.08 ± 0.04 in the young dam group vs. 0.96 ± 0.02 in the aged dam group, P < 0.05]. We have previously shown that in young adulthood (4 mo of age), male, but not female, offspring born to aged dams had impaired recovery from ischemia-reperfusion injury. Aging did not alter the susceptibility of female offspring to ischemia-reperfusion injury. Interestingly, wire myography data revealed that male offspring from aged dams had enhanced vascular sensitivity to methacholine (negative log of EC50: 7.4 ± 0.08 in young dams vs. 7.9 ± 0.11 in aged dams, P = 0.007) due, in part, to increased prostaglandin-mediated vasodilation. Despite intact endothelium-dependent relaxation, female offspring from aged dams had elevated systolic blood pressure (125.3 ± 4.2 mmHg in young dams vs. 144.0 ± 6.9 mmHg in aged dams, P = 0.03). These data highlight sex-specific mechanisms underlying cardiovascular programming in offspring born to dams of advanced age. NEW & NOTEWORTHY Our study demonstrated that adult male and female offspring (12 mo old) born to aged dams had impaired cardiac diastolic function and increased blood pressure, respectively, signifying sex-specific differential cardiovascular effects of advanced maternal age.
Assuntos
Idade Materna , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Disfunção Ventricular/fisiopatologia , Animais , Pressão Sanguínea , Feminino , Masculino , Traumatismo por Reperfusão Miocárdica/etiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Vasodilatação , Disfunção Ventricular/etiologiaRESUMO
Intrauterine growth restriction, a common consequence of prenatal hypoxia, is a leading cause of fetal morbidity and mortality with a significant impact on population health. Hypoxia may increase placental oxidative stress and lead to an abnormal release of placental-derived factors, which are emerging as potential contributors to developmental programming. Nanoparticle-linked drugs are emerging as a novel method to deliver therapeutics targeted to the placenta and avoid risking direct exposure to the fetus. We hypothesize that placental treatment with antioxidant MitoQ loaded onto nanoparticles (nMitoQ) will prevent the development of cardiovascular disease in offspring exposed to prenatal hypoxia. Pregnant rats were intravenously injected with saline or nMitoQ (125⯵M) on gestational day (GD) 15 and exposed to either normoxia (21% O2) or hypoxia (11% O2) from GD15-21 (term: 22â¯days). In one set of animals, rats were euthanized on GD 21 to assess fetal body weight, placental weight and placental oxidative stress. In another set of animals, dams were allowed to give birth under normal atmospheric conditions (term: GD 22) and male and female offspring were assessed at 7 and 13 months of age for in vivo cardiac function (echocardiography) and vascular function (wire myography, mesenteric artery). Hypoxia increased oxidative stress in placentas of male and female fetuses, which was prevented by nMitoQ. 7-month-old male and female offspring exposed to prenatal hypoxia demonstrated cardiac diastolic dysfunction, of which nMitoQ improved only in 7-month-old female offspring. Vascular sensitivity to methacholine was reduced in 13-month-old female offspring exposed to prenatal hypoxia, while nMitoQ treatment improved vasorelaxation in both control and hypoxia exposed female offspring. Male 13-month-old offspring exposed to hypoxia showed an age-related decrease in vascular sensitivity to phenylephrine, which was prevented by nMitoQ. In summary, placental-targeted MitoQ treatment in utero has beneficial sex- and age-dependent effects on adult offspring cardiovascular function.
Assuntos
Antioxidantes/administração & dosagem , Doenças Cardiovasculares/prevenção & controle , Hipóxia Fetal/tratamento farmacológico , Compostos Organofosforados/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Placenta/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Ubiquinona/análogos & derivados , Fatores Etários , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Modelos Animais de Doenças , Feminino , Hipóxia Fetal/metabolismo , Hipóxia Fetal/fisiopatologia , Idade Gestacional , Hemodinâmica/efeitos dos fármacos , Masculino , Exposição Materna , Contração Miocárdica/efeitos dos fármacos , Nanopartículas , Placenta/metabolismo , Placenta/fisiopatologia , Gravidez , Ratos Sprague-Dawley , Fatores Sexuais , Ubiquinona/administração & dosagem , Função Ventricular Esquerda/efeitos dos fármacosAssuntos
Barorreflexo , Gravidez , Feminino , Humanos , Idade Materna , Pressão Sanguínea , Frequência CardíacaRESUMO
Intrauterine growth restriction (IUGR, a pregnancy complication where the fetus does not reach its genetic growth potential) is a leading cause of fetal morbidity and mortality with a significant impact on population health. IUGR is associated with gestational hypoxia; which can lead to placental oxidative stress and fetal programming of cardiovascular disease. Mitochondria are a major source of placental oxidative stress and may provide a therapeutic target to mitigate the detrimental effects of placental oxidative stress on pregnancy outcomes. A nanoparticle-mediated delivery of a mitochondrial antioxidant to the placenta is a potential novel approach that may avoid unwanted off-target effects on the developing offspring.
Assuntos
Doenças Cardiovasculares/etiologia , Retardo do Crescimento Fetal/metabolismo , Hipóxia/metabolismo , Estresse Oxidativo/fisiologia , Placenta/metabolismo , Insuficiência Placentária/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Feminino , Desenvolvimento Fetal/fisiologia , Humanos , GravidezRESUMO
Advanced maternal age (≥35 years) is associated with an increased risk of pregnancy complications such as fetal growth restriction and preeclampsia. We previously demonstrated poor pregnancy outcomes (reduced fetal body weight), altered vascular function, and increased expression of endoplasmic reticulum (ER) stress markers (phospho-eIF2α and CHOP) in mesenteric arteries from a rat model of advanced maternal age. Further, treatment of aged dams during pregnancy with an ER stress inhibitor, tauroursodeoxycholic acid (TUDCA) increased fetal body weight (both male and female), tended to improve uterine artery function, and reduced expression of phospho-eIF2α and CHOP in systemic arteries. Placental ER stress has been linked to poor pregnancy outcomes in complicated pregnancies but whether placental ER stress is evident in advanced maternal age is not known. In addition, sex-specific changes in the placental labyrinth and junctional zones from male and female offspring in advanced maternal age have not been investigated. Therefore, the current study aimed to investigate the effect of TUDCA intervention on placental ER stress. We hypothesize that placental ER stress is increased in a rat model of advanced maternal age that is alleviated by TUDCA intervention for both sexes. Placental ER stress markers (GRP78, phospho-eIF2α, ATF-4, CHOP, ATF-6α, and sXBP-1) were quantified by Western blot in placentas from male and female offspring; the labyrinth and junction zones were analyzed separately. In the placental labyrinth zone from male offspring, only GRP78 (p = 0.007) was increased in aged dams compared to young dams; TUDCA treatment reduced the placental expression of GRP78 in aged dams (p = 0.003). In addition, TUDCA reduced the levels of phospho-eIF2α (p = 0.021), ATF-4 (p = 0.016), and CHOP (p = 0.012) in aged dams but no effect was observed in young TUDCA-treated dams. In the placental labyrinth zone from female offspring, an increased level of phospho-eIF2α (p = 0.005) was observed in aged dams compared to young dams, and TUDCA treatment had no effect in both young and aged groups. In the placental junctional zone from male and female offspring, no changes in the expression of GRP78, phospho-eIF2α, ATF-4, CHOP, and ATF-6α was observed with or without TUDCA treatment in both young and aged groups, however, a reduced expression of sXBP-1 protein was observed in from both male (p = 0.001) and female (p = 0.031) placentas from aged-TUDCA treated dams compared to aged control. In conclusion, our data highlight the complexity and sex-specificity of ER stress responses in advanced maternal age with TUDCA treatment maintaining ER stress proteins to basal levels and improving fetal growth in both male and female offspring.
Assuntos
Peso Fetal , Placenta , Ratos , Gravidez , Feminino , Masculino , Animais , Placenta/metabolismo , Idade Materna , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Resultado da Gravidez , Retículo EndoplasmáticoRESUMO
Advanced maternal age (≥35 years) is a risk factor for poor pregnancy outcomes. Pregnancy requires extensive maternal vascular adaptations, and with age, our blood vessels become stiffer and change in structure (collagen and elastin). However, the effect of advanced maternal age on the structure of human resistance arteries during pregnancy is unknown. As omental resistance arteries contribute to blood pressure regulation, assessing their structure in pregnancy may inform on the causal mechanisms underlying pregnancy complications in women of advanced maternal age. Omental fat biopsies were obtained from younger (<35 years) or advanced maternal age (≥35 years) women during caesarean delivery (n = 7-9/group). Arteries (200-300 µm) were isolated and passive mechanical properties (circumferential stress and strain) assessed with pressure myography. Collagen (Masson's Trichrome) and elastin (Verhoff) were visualized histologically and % positively-stained area was assessed. Median maternal age was 32 years (range 25-34) for younger, and 38 years (range 35-42) for women of advanced maternal age. Circumferential strain was lower in arteries from advanced maternal age versus younger women but circumferential stress was not different. Omental artery collagen levels were similar, while elastin levels were lower with advanced maternal age versus younger pregnancies. The collagen:elastin ratio was greater in arteries from advanced maternal age versus younger women. In conclusion, omental arteries from women of advanced maternal age were less compliant with less elastin compared with arteries of younger controls, which may affect how vascular stressors are tolerated during pregnancy. Understanding how vascular aging affects pregnancy adaptations may contribute to better pregnancy outcomes.
Assuntos
Elastina , Gestantes , Humanos , Feminino , Gravidez , Adulto , Idade Materna , Elastina/farmacologia , Artérias , Resultado da Gravidez , ColágenoRESUMO
BACKGROUND: Preeclampsia is a complex syndrome that includes maternal vascular dysfunction. Syncytiotrophoblast-derived extracellular vesicles from preeclampsia placentas (preeclampsia-STBEVs) were shown to induce endothelial dysfunction, but an endothelial transmembrane mediator is still unexplored. The LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) is a transmembrane scavenger receptor that can cause endothelial dysfunction, and its expression is increased in the endothelium of preeclampsia women. In this study, we hypothesized that LOX-1 mediates the effects of preeclampsia-STBEVs on endothelial function. METHODS: Preeclampsia-STBEVs were collected by perfusion of placentas from women with preeclampsia and in vitro and ex vivo endothelial cell function were assessed. RESULTS: In human umbilical vein endothelial cells, inhibition of LOX-1 with LOX-1 blocking antibody (TS20) reduced the uptake of preeclampsia-STBEVs (61.3±8.8%). TS20 prevented the activation of ERK (extracellular signal-regulated kinase, a kinase downstream of LOX-1) and reduced the activation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells; 21.1±8.0%) and nitrative stress (23.2±10.3%) that was induced by preeclampsia-STBEVs. Vascular function was assessed by wire myography in isolated mesenteric arteries from pregnant rats that were incubated overnight with preeclampsia-STBEVs±TS20. TS20 prevented endothelium-dependent vasodilation impairment induced by preeclampsia-STBEVs. Nitric oxide contribution to the relaxation was reduced by preeclampsia-STBEVs, which was prevented by TS20. Superoxide dismutase or apocynin, an inhibitor of NOX (nicotinamide adenine dinucleotide phosphate oxidase), restored the impaired endothelium-dependent vasodilation in arteries exposed to preeclampsia-STBEVs. CONCLUSIONS: Taken together, our findings demonstrate that LOX-1 mediates the endothelial dysfunction induced by preeclampsia-STBEVs. Our study further expands on the mechanisms that may lead to adverse outcomes in preeclampsia and proposes LOX-1 as a potential target for future interventions.
Assuntos
Vesículas Extracelulares , Pré-Eclâmpsia , Doenças Vasculares , Gravidez , Humanos , Feminino , Animais , Ratos , Células Endoteliais , Endotélio , Receptores de LDL Oxidado , LectinasRESUMO
Advanced maternal age (≥35 years) increases the risk of vascular complications in pregnancy that can result in fetal growth restriction and preeclampsia. Endoplasmic reticulum (ER) stress has been linked to adverse pregnancy outcomes in these complicated pregnancies. However, the role of ER stress in advanced maternal age is not known. We hypothesize that increased ER stress contributes to altered vascular function and poor pregnancy outcomes, and that treatment with the ER-stress inhibitor TUDCA will improve pregnancy outcomes. First, young and aged non-pregnant/pregnant rats were used to assess ER stress markers in mesenteric arteries; mesenteric artery phospho-eIF2α and CHOP expression were increased in aged dams compared to young dams. In a second study, young and aged control and TUDCA-treated dams were studied on gestational day (GD) 20 (term = 22 days). TUDCA treatment was provided via the drinking water throughout pregnancy (GD0-GD20; calculated dose of 150 mg/kg/day TUDCA). ER stress markers were quantified in mesenteric arteries, blood pressure was measured, pregnancy outcomes were recorded, mesenteric and main uterine arteries were isolated and vascular function was assessed by wire myography. Aged dams had increased phospho-eIF2α and CHOP expression, reduced fetal weight, reduced litter size, and impaired uterine artery relaxation. In the aged dams, TUDCA treatment reduced phospho-eIF2α and CHOP expression, reduced blood pressure, improved fetal body weight, and tended to improve uterine artery function compared to control-treated aged dams. In conclusion, our data illustrate the role of ER stress, as well as TUDCA as a potential therapeutic that may benefit pregnancy outcomes in advanced maternal age.
RESUMO
Prenatal hypoxia is a common complication of pregnancy and is associated with detrimental health outcomes, such as impaired cardiac and vascular function, in adult offspring. Exposure to prenatal hypoxia reportedly impacts the reproductive system of female offspring. Whether exposure to prenatal hypoxia influences pregnancy adaptations and outcomes in these female offspring is unknown. We hypothesised that prenatal hypoxia impairs uterine artery adaptations in pregnancies of the adult offspring. Pregnancy outcomes and uterine artery function were assessed in 14-16 weeks old non-pregnant and late pregnant (gestational day 20; term = 22 days) adult female offspring born to rats exposed to prenatal normoxia (21% oxygen) or hypoxia (11% oxygen, between days 15-21 of gestation). Compared with normoxia controls, prenatal hypoxia was associated with pregnant adult offspring having reduced placental weights in their litters, and uterine artery circumferential stress that increased with pregnancy. Overall, prenatal hypoxia adversely, albeit mildly, compromised pregnancies of adult offspring.