Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Genom ; 10(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38376382

RESUMO

The Klebsiella pneumoniae species complex (KpSC) is a major source of nosocomial infections globally with high rates of resistance to antimicrobials. Consequently, there is growing interest in understanding virulence factors and their association with cellular metabolic processes for developing novel anti-KpSC therapeutics. Phenotypic assays have revealed metabolic diversity within the KpSC, but metabolism research has been neglected due to experiments being difficult and cost-intensive. Genome-scale metabolic models (GSMMs) represent a rapid and scalable in silico approach for exploring metabolic diversity, which compile genomic and biochemical data to reconstruct the metabolic network of an organism. Here we use a diverse collection of 507 KpSC isolates, including representatives of globally distributed clinically relevant lineages, to construct the most comprehensive KpSC pan-metabolic model to date, KpSC pan v2. Candidate metabolic reactions were identified using gene orthology to known metabolic genes, prior to manual curation via extensive literature and database searches. The final model comprised a total of 3550 reactions, 2403 genes and can simulate growth on 360 unique substrates. We used KpSC pan v2 as a reference to derive strain-specific GSMMs for all 507 KpSC isolates, and compared these to GSMMs generated using a prior KpSC pan-reference (KpSC pan v1) and two single-strain references. We show that KpSC pan v2 includes a greater proportion of accessory reactions (8.8 %) than KpSC pan v1 (2.5 %). GSMMs derived from KpSC pan v2 also generate more accurate growth predictions, with high median accuracies of 95.4 % (aerobic, n=37 isolates) and 78.8 % (anaerobic, n=36 isolates) for 124 matched carbon substrates. KpSC pan v2 is freely available at https://github.com/kelwyres/KpSC-pan-metabolic-model, representing a valuable resource for the scientific community, both as a source of curated metabolic information and as a reference to derive accurate strain-specific GSMMs. The latter can be used to investigate the relationship between KpSC metabolism and traits of interest, such as reservoirs, epidemiology, drug resistance or virulence, and ultimately to inform novel KpSC control strategies.


Assuntos
Infecção Hospitalar , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Carbono , Bases de Dados Factuais , Genômica , Klebsiella
2.
PeerJ ; 11: e14969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36974140

RESUMO

Ribosome-targeting antibiotics comprise over half of antibiotics used in medicine, but our fundamental knowledge of their binding sites is derived primarily from ribosome structures of non-pathogenic species. These include Thermus thermophilus, Deinococcus radiodurans and the archaean Haloarcula marismortui, as well as the commensal and sometimes pathogenic organism, Escherichia coli. Advancements in electron cryomicroscopy have allowed for the determination of more ribosome structures from pathogenic bacteria, with each study highlighting species-specific differences that had not been observed in the non-pathogenic structures. These observed differences suggest that more novel ribosome structures, particularly from pathogens, are required for a more accurate understanding of the level of diversity of the entire bacterial ribosome, with the potential of leading to innovative advancements in antibiotic research. In this study, high accuracy covariance and hidden Markov models were used to annotate ribosomal RNA and protein sequences respectively from genomic sequence, allowing us to determine the underlying ribosomal sequence diversity using phylogenetic methods. This analysis provided evidence that the current non-pathogenic ribosome structures are not sufficient representatives of some pathogenic bacteria, such as Campylobacter pylori, or of whole phyla such as Bacteroidota (Bacteroidetes).


Assuntos
RNA , Ribossomos , RNA/análise , Filogenia , Ribossomos/genética , Antibacterianos/análise , Escherichia coli/genética , Bactérias/genética , Análise de Sequência de Proteína
3.
Elife ; 122023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37815531

RESUMO

Metabolic capacity can vary substantially within a bacterial species, leading to ecological niche separation, as well as differences in virulence and antimicrobial susceptibility. Genome-scale metabolic models are useful tools for studying the metabolic potential of individuals, and with the rapid expansion of genomic sequencing there is a wealth of data that can be leveraged for comparative analysis. However, there exist few tools to construct strain-specific metabolic models at scale. Here, we describe Bactabolize, a reference-based tool which rapidly produces strain-specific metabolic models and growth phenotype predictions. We describe a pan reference model for the priority antimicrobial-resistant pathogen, Klebsiella pneumoniae, and a quality control framework for using draft genome assemblies as input for Bactabolize. The Bactabolize-derived model for K. pneumoniae reference strain KPPR1 performed comparatively or better than currently available automated approaches CarveMe and gapseq across 507 substrate and 2317 knockout mutant growth predictions. Novel draft genomes passing our systematically defined quality control criteria resulted in models with a high degree of completeness (≥99% genes and reactions captured compared to models derived from matched complete genomes) and high accuracy (mean 0.97, n=10). We anticipate the tools and framework described herein will facilitate large-scale metabolic modelling analyses that broaden our understanding of diversity within bacterial species and inform novel control strategies for priority pathogens.


Assuntos
Anti-Infecciosos , Genoma Bacteriano , Humanos , Klebsiella pneumoniae/genética , Virulência/genética , Fenótipo , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia
4.
Adv Ther (Weinh) ; 5(11)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36589922

RESUMO

There are many neurological rare diseases where animal models have proven inadequate or do not currently exist. NGLY1 Deficiency, a congenital disorder of deglycosylation, is a rare disease that predominantly affects motor control, especially control of neuromuscular action. In this study, NGLY1-deficient, patient-derived induced pluripotent stem cells (iPSCs) were differentiated into motoneurons (MNs) to identify disease phenotypes analogous to clinical disease pathology with significant deficits apparent in the NGLY1-deficient lines compared to the control. A neuromuscular junction (NMJ) model was developed using patient and wild type (WT) MNs to study functional differences between healthy and diseased NMJs. Reduced axon length, increased and shortened axon branches, MN action potential (AP) bursting and decreased AP firing rate and amplitude were observed in the NGLY1-deficient MNs in monoculture. When transitioned to the NMJ-coculture system, deficits in NMJ number, stability, failure rate, and synchronicity with indirect skeletal muscle (SkM) stimulation were observed. This project establishes a phenotypic NGLY1 model for investigation of possible therapeutics and investigations into mechanistic deficits in the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA