Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nucleic Acids Res ; 51(14): 7342-7356, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37326017

RESUMO

Efficient repair of oxidized DNA is critical for genome-integrity maintenance. Cockayne syndrome protein B (CSB) is an ATP-dependent chromatin remodeler that collaborates with Poly(ADP-ribose) polymerase I (PARP1) in the repair of oxidative DNA lesions. How these proteins integrate during DNA repair remains largely unknown. Here, using chromatin co-fractionation studies, we demonstrate that PARP1 and PARP2 promote recruitment of CSB to oxidatively-damaged DNA. CSB, in turn, contributes to the recruitment of XRCC1, and histone PARylation factor 1 (HPF1), and promotes histone PARylation. Using alkaline comet assays to monitor DNA repair, we found that CSB regulates single-strand break repair (SSBR) mediated by PARP1 and PARP2. Strikingly, CSB's function in SSBR is largely bypassed when transcription is inhibited, suggesting CSB-mediated SSBR occurs primarily at actively transcribed DNA regions. While PARP1 repairs SSBs at sites regardless of the transcription status, we found that PARP2 predominantly functions in actively transcribed DNA regions. Therefore, our study raises the hypothesis that SSBR is executed by different mechanisms based on the transcription status.


Assuntos
Cromatina , Humanos , Proteínas de Transporte/genética , Cromatina/genética , DNA/genética , DNA/metabolismo , Reparo do DNA , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
2.
Toxicol Appl Pharmacol ; 457: 116320, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403797

RESUMO

Environmental arsenic exposure is associated with lung cancer. Arsenic is the first substance known to cause lung cancer by two distinct routes, ingestion and inhalation, in the forms of soluble arsenite and particulate arsenic trioxide, respectively. In comparison to significant progresses in research on mechanisms for lung carcinogenesis of arsenic ingestion, inhalation arsenic exposure route in particulate form and its lung carcinogenic mechanisms are relatively under-investigated. Fundamentally, it remains unclear whether particulate arsenic exposure is in a dissolved form and whether particulate exposure yields higher damage. Utilizing dynamic laser scattering, particulate arsenic trioxide exposure in cellular system was confirmed to be in particulate form instead of dissolved form. Using immunofluorescence, particulate arsenic trioxide was demonstrated to generate dramatically higher oxidative DNA damage and strand break, as well as significantly higher superoxide, in lung epithelial cell lines such as BEAS-2B, HSAEC1-KT, and SAE, comparing to soluble arsenite exposure at similar or lower concentration. This study demonstrated that particulate arsenic trioxide exposure yields higher damage in lung epithelial cells, and indicated that inhalation route of particulate arsenic exposure plays an important role in lung carcinogenesis.

3.
Toxicol Appl Pharmacol ; 434: 115799, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798142

RESUMO

Arsenic is a naturally occurring element present in food, soil and water and human exposure is associated with increased cancer risk. Arsenic inhibits DNA repair at low, non-cytotoxic concentrations and amplifies the mutagenic and carcinogenic impact of other DNA-damaging agents, such as ultraviolet radiation (UVR). Arsenic exposure leads to oxidation of zinc coordinating cysteine residues, zinc loss and decreased activity of the DNA repair protein poly(ADP)ribose polymerase (PARP)-1. Because arsenic stimulates NADPH oxidase (NOX) activity leading to generation of reactive oxygen species (ROS), the goal of this study was to investigate the role of NOX in arsenic-induced inhibition of PARP activity and retention of DNA damage. NOX involvement in the arsenic response was assessed in vitro and in vivo. Keratinocytes were treated with or without arsenite, solar-simulated UVR, NOX inhibitors and/or isoform specific NOX siRNA. Knockdown or inhibition of NOX decreased arsenite-induced ROS, PARP-1 oxidation and DNA damage retention, while restoring arsenite inhibition of PARP-1 activity. The NOX2 isoform was determined to be the major contributor to arsenite-induced ROS generation and DNA damage retention. In vivo DNA damage was measured by immunohistochemical staining and analysis of dorsal epidermis sections from C57BI/6 and p91phox knockout (NOX2-/-) mice. There was no significant difference in solar-simulated UVR DNA damage as detected by percent PH2AX positive cells within NOX2-/- mice versus control. In contrast, arsenite-dependent retention of UVR-induced DNA damage was markedly reduced. Altogether, the in vitro and in vivo findings indicate that NOX is involved in arsenic enhancement of UVR-induced DNA damage.


Assuntos
Arsênio/toxicidade , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , NADPH Oxidase 2/metabolismo , Raios Ultravioleta , Animais , Linhagem Celular , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Camundongos , Camundongos Knockout , NADPH Oxidase 1/genética , NADPH Oxidase 1/metabolismo , NADPH Oxidase 2/genética , Espécies Reativas de Oxigênio
4.
Toxicol Appl Pharmacol ; 331: 108-115, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28552776

RESUMO

Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)-1, and inhibits PARP-1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)-induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP-1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP-1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP-1 binding to chromatin as demonstrated by Chip-on-Western assays. Zinc effectively restored DNA binding of PARP-1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite-augmented direct UVR-induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP-1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite-inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA-associated NER pathway than for the PARP-1-dependent BER pathway. This study expands our understanding of arsenite's role in DNA repair inhibition and co-carcinogenesis.


Assuntos
Arsenitos/farmacologia , Queratinócitos/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Zinco/farmacologia , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/fisiologia , Relação Dose-Resposta a Droga , Humanos , Queratinócitos/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
5.
J Biol Chem ; 290(30): 18361-9, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26063799

RESUMO

Cysteine oxidation induced by reactive oxygen species (ROS) on redox-sensitive targets such as zinc finger proteins plays a critical role in redox signaling and subsequent biological outcomes. We found that arsenic exposure led to oxidation of certain zinc finger proteins based on arsenic interaction with zinc finger motifs. Analysis of zinc finger proteins isolated from arsenic-exposed cells and zinc finger peptides by mass spectrometry demonstrated preferential oxidation of C3H1 and C4 zinc finger configurations. C2H2 zinc finger proteins that do not bind arsenic were not oxidized by arsenic-generated ROS in the cellular environment. The findings suggest that selectivity in arsenic binding to zinc fingers with three or more cysteines defines the target proteins for oxidation by ROS. This represents a novel mechanism of selective protein oxidation and demonstrates how an environmental factor may sensitize certain target proteins for oxidation, thus altering the oxidation profile and redox regulation.


Assuntos
Arsênio/química , Cisteína/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Arsênio/toxicidade , Cisteína/química , Humanos , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/química , Dedos de Zinco
6.
Toxicol Appl Pharmacol ; 291: 13-20, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26627003

RESUMO

Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 µM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations.


Assuntos
Reparo do DNA/efeitos dos fármacos , Reparo do DNA/fisiologia , Inibidores de Poli(ADP-Ribose) Polimerases/toxicidade , Poli(ADP-Ribose) Polimerases/metabolismo , Urânio/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Poli(ADP-Ribose) Polimerase-1
7.
J Biol Chem ; 287(47): 39824-33, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23038248

RESUMO

Exposure to ultraviolet radiation (UVR) promotes the formation of UVR-induced, DNA helix distorting photolesions such as (6-4) pyrimidine-pyrimidone photoproducts and cyclobutane pyrimidine dimers. Effective repair of such lesions by the nucleotide excision repair (NER) pathway is required to prevent DNA mutations and chromosome aberrations. Poly(ADP-ribose) polymerase-1 (PARP-1) is a zinc finger protein with well documented involvement in base excision repair. PARP-1 is activated in response to DNA damage and catalyzes the formation of poly(ADP-ribose) subunits that assist in the assembly of DNA repair proteins at sites of damage. In this study, we present evidence for PARP-1 contributions to NER, extending the knowledge of PARP-1 function in DNA repair beyond the established role in base excision repair. Silencing the PARP-1 protein or inhibiting PARP activity leads to retention of UVR-induced photolesions. PARP activation following UVR exposure promotes association between PARP-1 and XPA, a central protein in NER. Administration of PARP inhibitors confirms that poly(ADP-ribose) facilitates PARP-1 association with XPA in whole cell extracts, in isolated chromatin complexes, and in vitro. Furthermore, inhibition of PARP activity decreases UVR-stimulated XPA chromatin association, illustrating that these relationships occur in a meaningful context for NER. These results provide a mechanistic link for PARP activity in the repair of UVR-induced photoproducts.


Assuntos
Dano ao DNA , Reparo do DNA/fisiologia , Queratinócitos/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Inibidores Enzimáticos/farmacologia , Humanos , Queratinócitos/citologia , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/genética , Poli(ADP-Ribose) Polimerases/genética , Raios Ultravioleta/efeitos adversos , Proteína de Xeroderma Pigmentoso Grupo A/genética
8.
Toxicol Appl Pharmacol ; 269(2): 81-8, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23523584

RESUMO

Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations.


Assuntos
Arsenitos/toxicidade , Dano ao DNA/efeitos dos fármacos , Células Epidérmicas , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Zinco/farmacologia , Animais , Células Cultivadas , Dano ao DNA/efeitos da radiação , Reparo do DNA , Humanos , Queratinócitos/citologia , Camundongos , Mutação , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Raios Ultravioleta/efeitos adversos , Zinco/administração & dosagem
9.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865271

RESUMO

Environmental co-exposures are widespread and are major contributors to carcinogenic mechanisms. Two well-established environmental agents causing skin cancer are ultraviolet radiation (UVR) and arsenic. Arsenic is a known co-carcinogen that enhances UVR's carcinogenicity. However, the mechanisms of arsenic co-carcinogenesis are not well understood. In this study, we utilized primary human keratinocytes and a hairless mouse model to investigate the carcinogenic and mutagenic properties of co-exposure to arsenic and UVR. In vitro and in vivo exposures revealed that, on its own, arsenic is neither mutagenic nor carcinogenic. However, in combination with UVR, arsenic exposure has a synergistic effect leading to an accelerated mouse skin carcinogenesis as well as to more than 2-fold enrichment of UVR mutational burden. Notably, mutational signature ID13, previously found only in UVR-associated human skin cancers, was observed exclusively in mouse skin tumors and cell lines jointly exposed to arsenic and UVR. This signature was not observed in any model system exposed purely to arsenic or purely to UVR, making ID13 the first co-exposure signature to be reported using controlled experimental conditions. Analysis of existing genomics data from basal cell carcinomas and melanomas revealed that only a subset of human skin cancers harbor ID13 and, consistent with our experimental observations, these cancers exhibited an elevated UVR mutagenesis. Our results provide the first report of a unique mutational signature caused by a co-exposure to two environmental carcinogens and the first comprehensive evidence that arsenic is a potent co-mutagen and co-carcinogen of UVR. Importantly, our findings suggest that a large proportion of human skin cancers are not formed purely due to UVR exposure but rather due to a co-exposure of UVR and other co-mutagens such as arsenic.

10.
Commun Biol ; 6(1): 1273, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104187

RESUMO

Arsenic enhances the carcinogenicity of ultraviolet radiation (UVR). However, the mechanisms of arsenic-driven oncogenesis are not well understood. Here, we utilize experimental systems to investigate the carcinogenic and mutagenic properties of co-exposure to arsenic and UVR. In vitro and in vivo exposures indicate that, by itself, arsenic is not mutagenic. However, in combination with UVR, arsenic exposure has a synergistic effect leading to an accelerated mouse skin carcinogenesis and to more than 2-fold enrichment of UVR mutational burden. Notably, mutational signature ID13, previously found only in UVR-associated human skin cancers, is observed exclusively in mouse skin tumors and cell lines jointly exposed to arsenic and UVR. This signature was not observed in any model system exposed purely to arsenic or purely to UVR, making ID13, to the best of our knowledge, the first co-exposure signature to be reported using controlled experimental conditions. Analysis of existing skin cancer genomics data reveals that only a subset of cancers harbor ID13 and these exhibit an elevated UVR mutagenesis. Our results report a unique mutational signature caused by a co-exposure to two environmental carcinogens and provide comprehensive evidence that arsenic is a potent co-mutagen and co-carcinogen of UVR.


Assuntos
Arsênio , Neoplasias Cutâneas , Animais , Camundongos , Humanos , Arsênio/toxicidade , Raios Ultravioleta/efeitos adversos , Mutagênicos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Pele
11.
J Biol Chem ; 286(26): 22855-63, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21550982

RESUMO

Arsenic inhibits DNA repair and enhances the genotoxicity of DNA-damaging agents such as benzo[a]pyrene and ultraviolet radiation. Arsenic interaction with DNA repair proteins containing functional zinc finger motifs is one proposed mechanism to account for these observations. Here, we report that arsenite binds to both CCHC DNA-binding zinc fingers of the DNA repair protein PARP-1 (poly(ADP-ribose) polymerase-1). Furthermore, trivalent arsenite coordinated with all three cysteine residues as demonstrated by MS/MS. MALDI-TOF-MS analysis of peptides harboring site-directed substitutions of cysteine with histidine residues within the PARP-1 zinc finger revealed that arsenite bound to peptides containing three or four cysteine residues, but not to peptides with two cysteines, demonstrating arsenite binding selectivity. This finding was not unique to PARP-1; arsenite did not bind to a peptide representing the CCHH zinc finger of the DNA repair protein aprataxin, but did bind to an aprataxin peptide mutated to a CCHC zinc finger. To investigate the impact of arsenite on PARP-1 zinc finger function, we measured the zinc content and DNA-binding capacity of PARP-1 immunoprecipitated from arsenite-exposed cells. PARP-1 zinc content and DNA binding were decreased by 76 and 80%, respectively, compared with protein isolated from untreated cells. We observed comparable decreases in zinc content for XPA (xeroderma pigmentosum group A) protein (CCCC zinc finger), but not SP-1 (specificity protein-1) or aprataxin (CCHH zinc finger). These findings demonstrate that PARP-1 is a direct molecular target of arsenite and that arsenite interacts selectively with zinc finger motifs containing three or more cysteine residues.


Assuntos
Arsenitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Dedos de Zinco , Arsenitos/química , Arsenitos/farmacologia , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Teratogênicos/química , Teratogênicos/metabolismo , Teratogênicos/farmacologia
12.
Work ; 32(3): 285-98, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19369721

RESUMO

A limited number of studies have focused on computer-use-related MSDs in college students, though risk factor exposure may be similar to that of workers who use computers. This study examined computer use patterns of college students, and made comparisons to a group of previously studied computer-using professionals. 234 students completed a web-based questionnaire concerning computer use habits and physical discomfort respondents specifically associated with computer use. As a group, students reported their computer use to be at least 'Somewhat likely' 18 out of 24 h/day, compared to 12 h for the professionals. Students reported more uninterrupted work behaviours than the professionals. Younger graduate students reported 33.7 average weekly computing hours, similar to hours reported by younger professionals. Students generally reported more frequent upper extremity discomfort than the professionals. Frequent assumption of awkward postures was associated with frequent discomfort. The findings signal a need for intervention, including, training and education, prior to entry into the workforce. Students are future workers, and so it is important to determine whether their increasing exposure to computers, prior to entering the workforce, may make it so they enter already injured or do not enter their chosen profession due to upper extremity MSDs.


Assuntos
Sistema Musculoesquelético/fisiopatologia , Dor , Universidades , Interface Usuário-Computador , Adulto , Feminino , Humanos , Masculino , Inquéritos e Questionários , Estados Unidos , Adulto Jovem
13.
Chem Res Toxicol ; 21(9): 1806-13, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18707137

RESUMO

Arsenic is a recognized human carcinogen, but the mechanism of carcinogenesis is not well understood. Oxidative stress and inhibition of DNA damage repair have been postulated as potential carcinogenic actions of arsenic. The present study tests the hypothesis that arsenite not only induces oxidative stress but also inhibits the activity of the DNA base excision repair protein, poly(ADP-ribose) polymerase-1 (PARP-1), leading to exacerbation of the oxidative DNA damage induced by arsenic. HaCat cells were treated with arsenite for 24 h before measuring 8-hydroxyl-2'-deoxyguanosine (8-OHdG), PARP-1 activity, and reactive oxygen species (ROS). Zinc supplementation and PARP-1 siRNA were used to increase or decrease, respectively, the PARP-1 protein's physiological function. At high concentrations (10 microM or higher), arsenite greatly induced oxidative DNA damage, as indicated by 8-OHdG formation. At lower concentrations (1 microM), arsenite did not produce detectable 8-OHdG, but was still able to effectively inhibit PARP-1 activity. Zinc supplementation reduced the formation of 8-OHdG, restored the PARP-1 activity inhibited by arsenite, but did not decrease ROS production. SiRNA knockdown of PARP-1 did not affect the 8-OHdG level induced by arsenic, while it greatly increased the 8-OHdG level produced by hydrogen peroxide indicating that PARP-1 is a molecular target of arsenite. Our findings demonstrate that in addition to inducing oxidative stress at higher concentrations, arsenite can also inhibit the function of a key DNA repair protein, PARP-1, even at very low concentrations, thus exacerbating the overall oxidative DNA damage produced by arsenite, and potentially, by other oxidants as well.


Assuntos
Arsenitos/farmacologia , Dano ao DNA/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina , Células Cultivadas , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análise , Desoxiguanosina/biossíntese , Relação Dose-Resposta a Droga , Humanos , Peróxido de Hidrogênio/farmacologia , Oxirredução/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Zinco/farmacologia
14.
Oncotarget ; 7(49): 80482-80492, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27741521

RESUMO

Arsenic, a widely distributed carcinogen, is known to significantly amplify the impact of other carcinogens through inhibition of DNA repair. Our recent work suggests that reactive oxygen/nitrogen species (ROS/RNS) induced by arsenite (AsIII) play an important role in the inhibition of the DNA repair protein Poly(ADP-ribose) polymerase 1 (PARP-1). AsIII-induced ROS lead to oxidation of cysteine residues within the PARP-1 zinc finger DNA binding domain. However, the mechanism underlying RNS-mediated PARP inhibition by arsenic remains unknown. In this work, we demonstrate that AsIII treatment of normal human keratinocyte (HEKn) cells induced S-nitrosation on cysteine residues of PARP-1 protein, in a similar manner to a nitric oxide donor. S-nitrosation of PARP-1 could be reduced by 1400W (inducible nitric oxide synthase inhibitor) or c-PTIO (a nitric oxide scavenger). Furthermore, AsIII treatment of HEKn cells leads to zinc loss and inhibition of PARP-1 enzymatic activity. AsIII and 1400W/c-PTIO co-treatment demonstrate that these effects occur in an iNOS- and NO-dependent manner. Importantly, we confirmed S-nitrosation on the zinc finger DNA binding domain of PARP-1 protein. Taken together, AsIII induces S-nitrosation on PARP-1 zinc finger DNA binding domain by generating NO through iNOS activation, leading to zinc loss and inhibition of PARP-1 activity, thereby increasing retention of damaged DNA. These findings identify S-nitrosation as an important component of the molecular mechanism underlying AsIII inhibition of DNA repair, which may benefit the development of preventive and intervention strategies against AsIII co-carcinogenesis.


Assuntos
Arsenitos/toxicidade , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/toxicidade , Processamento de Proteína Pós-Traducional , Compostos de Sódio/toxicidade , Linhagem Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cisteína , Sequestradores de Radicais Livres/farmacologia , Humanos , Queratinócitos/enzimologia , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Nitrosação , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/metabolismo , Fatores de Tempo , Raios Ultravioleta , Zinco/metabolismo , Dedos de Zinco
15.
Mar Biotechnol (NY) ; 7(5): 440-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15976939

RESUMO

Randomly amplified polymorphic DNA (RAPD) markers were used to assign individual adult sockeye salmon to their spawning sites using a genotype assignment test. Six primers were selected for use by screening bulked DNA samples for markers missing in fish from one or more of 5 sites in British Columbia or Alaska. Of 73 markers scored, 54 showed variation between or within sites among the sampled fish. Thirty-seven of the variable markers were not detected in any fish from one or more sites; 18 variable markers were detected in all fish from one or more other sites. Thus 25% of markers scored were found in all fish of some sites and in no fish of some other sites. An assignment test placed all 70 fish tested into their correct populations. Principal coordinate analysis of genetic variation produced clusters of fish corresponding to each sampling site. No sex-specific RAPD markers were detected among more than 1300 screened.


Assuntos
Frequência do Gene , Marcadores Genéticos , Testes Genéticos , Salmão/genética , Alaska , Animais , Colúmbia Britânica , Feminino , Geografia , Masculino , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético , Dinâmica Populacional , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , Salmão/classificação , Salmão/fisiologia , Comportamento Sexual Animal
16.
Biol Psychiatry ; 52(8): 785-94, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12372650

RESUMO

BACKGROUND: Anatomic magnetic resonance imaging (MRI) studies of attention-deficit/hyperactivity disorder (ADHD) have been limited by use of callosal rather than sulcal/gyral landmarks in defining cerebral lobes and functionally relevant sublobar regions (e.g., prefrontal cortex). We present an investigation of cerebral volumes in ADHD using a Talairach-based approach that uses cortical landmarks to define functionally relevant regions. METHODS: Volumes were compared between groups of 12 boys with ADHD and 12 age- and gender-matched control subjects, using a series of multiple analyses of variance. RESULTS: Boys with ADHD had (on average) 8.3% smaller total cerebral volumes. Significant reductions in lobar volumes were seen only for the frontal lobes. Within the frontal lobes, a reduction was seen in both gray and white matter volumes, with some evidence suggesting lateralization of these findings: reduction in frontal white matter volume was specific to the left hemisphere; there was a bilateral reduction in frontal gray matter volume but more so in the right hemisphere. Subparcellation of the frontal lobe revealed smaller prefrontal, premotor, and deep white matter volumes. CONCLUSIONS: Findings suggest that ADHD is associated with decreased frontal lobe gray and white matter volumes. More than one subdivision of the frontal lobes appears to be reduced in volume, suggesting that the clinical picture of ADHD encompasses dysfunctions attributable to anomalous development of both premotor and prefrontal cortices.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Córtex Motor/patologia , Córtex Pré-Frontal/patologia , Adolescente , Análise de Variância , Estudos de Casos e Controles , Criança , Humanos , Imageamento por Ressonância Magnética , Masculino
17.
J Child Neurol ; 18(7): 463-70, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12940651

RESUMO

To gain insight into the specificity of cerebellar vermian abnormalities reported in autism, we conducted a magnetic resonance imaging (MRI) study of boys with either of two conditions associated with autism, Down syndrome and fragile X syndrome, compared with boys with idiopathic autism and controls. The subjects, ranging in age from 3 to 9 years, included 16 boys with Down syndrome + autism and 11 boys with Down syndrome only; 13 boys with fragile X syndrome + autism and 9 boys with fragile X syndrome only; 10 boys with idiopathic autism; and 22 controls. Diagnosis of autism was based on DSM-IV criteria, confirmed primarily by the Autism Diagnostic Interview. T1-weighted midsagittal MRIs were used to measure midline structures. Intracranial area, reflecting brain size, was significantly smaller in subjects with Down syndrome. Therefore, all vermian measures were expressed as ratios to intracranial area. Analysis of covariance (covarying for age and IQ) demonstrated that posterior vermi (lobules VI-VII and VIII-X) were markedly smaller in both Down syndrome groups and those with fragile X syndrome only, whereas only lobules VI-VII were reduced in idiopathic autism. Factorial analyses of variance tested interactions between autism factor and the diagnosis of Down syndrome or fragile X syndrome. The size of lobules VI-VII/intracranial area was dependent on autism status only in fragile X syndrome, with ratios significantly larger in fragile X syndrome with autism with respect to fragile X syndrome only. We conclude that selective posterior vermis hypoplasia is seen not only in idiopathic autism but also in Down syndrome and some individuals with fragile X syndrome. However, reductions in vermian lobules VI and VII appear to be specific to idiopathic autism, whereas increased size of lobules VI and VII is associated with autism in fragile X syndrome. The latter results are consistent with MRI studies showing lobules VI-VII hyperplasia in a subset of subjects with idiopathic autism and cerebral and hippocampal enlargements in fragile X syndrome.


Assuntos
Transtorno Autístico/fisiopatologia , Cerebelo/anormalidades , Cerebelo/patologia , Síndrome de Down/fisiopatologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Criança , Síndrome de Down/complicações , Síndrome do Cromossomo X Frágil/complicações , Humanos , Imageamento por Ressonância Magnética , Masculino
18.
Crit Care Nurse ; 33(6): 57-66, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24293556

RESUMO

The development of stage III or IV pressure ulcers is currently considered a never event. Critical care patients are at high risk for development of pressure ulcers because of the increased use of devices, hemodynamic instability, and the use of vasoactive medications. This article addresses risk factors, risk scales such as the Norden, Braden, Waterlow, and Jackson-Cubbin scales used to determine the risk of pressure ulcers in critical care patients, and prevention of device-related pressure ulcers in patients in the critical care unit.


Assuntos
Úlcera por Pressão/prevenção & controle , Estado Terminal , Equipamentos e Provisões/efeitos adversos , Enfermagem Baseada em Evidências , Humanos , Unidades de Terapia Intensiva , Medição de Risco , Fatores de Risco
19.
Crit Care Nurse ; 32(4): 52-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22855079

RESUMO

Stevens-Johnson syndrome is a rare, potentially fatal drug reaction that causes necrosis of epidermal cells. Early recognition of the syndrome is essential to prevent complications. This article discusses identification, complications, and treatment of Stevens-Johnson syndrome.


Assuntos
Síndrome de Stevens-Johnson/enfermagem , Diagnóstico Diferencial , Humanos , Avaliação em Enfermagem , Fatores de Risco , Síndrome de Stevens-Johnson/diagnóstico , Síndrome de Stevens-Johnson/fisiopatologia , Síndrome de Stevens-Johnson/terapia
20.
Crit Care Nurse ; 31(4): 21-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21807681

RESUMO

Patients with heart failure and pulmonary edema are often admitted to the critical care unit. Many of these patients have severe peripheral edema, which may be associated with exudates and wounds of the lower extremities and which present a challenge to critical care nurses. Little information is available on treatment of peripheral edema in the intensive care unit or in patients with unstable hemodynamic status. Nursing care is based on available evidence, findings on chest radiographs, and hemodynamic status. Medications that contribute to peripheral edema should be evaluated and discontinued if possible. An appropriate mattress surface with an underpad that promotes wicking away of moisture should be selected. The patient's lower extremities should be elevated according to his or her current pulmonary status, and skin-protective interventions should be instituted. Multilayer compression wraps should be avoided until the patient's hemodynamic status is stable and the patient can get out of bed.


Assuntos
Cuidados Críticos , Edema/enfermagem , Insuficiência Cardíaca/enfermagem , Extremidade Inferior , Doença Aguda , Idoso , Edema/etiologia , Enfermagem Baseada em Evidências , Feminino , Insuficiência Cardíaca/complicações , Humanos , Guias de Prática Clínica como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA