RESUMO
Multiple sensory cues emanating from humans are thought to guide blood-feeding female mosquitoes to a host. To determine the relative contribution of carbon dioxide (CO2) detection to mosquito host-seeking behavior, we mutated the AaegGr3 gene, a subunit of the heteromeric CO2 receptor in Aedes aegypti mosquitoes. Gr3 mutants lack electrophysiological and behavioral responses to CO2. These mutants also fail to show CO2-evoked responses to heat and lactic acid, a human-derived attractant, suggesting that CO2 can gate responses to other sensory stimuli. Whereas attraction of Gr3 mutants to live humans in a large semi-field environment was only slightly impaired, responses to an animal host were greatly reduced in a spatial-scale-dependent manner. Synergistic integration of heat and odor cues likely drive host-seeking behavior in the absence of CO2 detection. We reveal a networked series of interactions by which multimodal integration of CO2, human odor, and heat orchestrates mosquito attraction to humans.
Assuntos
Aedes/fisiologia , Dióxido de Carbono , Animais , Sangue , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos Vetores/fisiologia , Ácido Láctico/metabolismo , Odorantes , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismoRESUMO
The ability to keep track of one's location in space is a critical behavior for animals navigating to and from a salient location, and its computational basis is now beginning to be unraveled. Here, we tracked flies in a ring-shaped channel as they executed bouts of search triggered by optogenetic activation of sugar receptors. Unlike experiments in open field arenas, which produce highly tortuous search trajectories, our geometrically constrained paradigm enabled us to monitor flies' decisions to move toward or away from the fictive food. Our results suggest that flies use path integration to remember the location of a food site even after it has disappeared, and flies can remember the location of a former food site even after walking around the arena one or more times. To determine the behavioral algorithms underlying Drosophila search, we developed multiple state transition models and found that flies likely accomplish path integration by combining odometry and compass navigation to keep track of their position relative to the fictive food. Our results indicate that whereas flies re-zero their path integrator at food when only one feeding site is present, they adjust their path integrator to a central location between sites when experiencing food at two or more locations. Together, this work provides a simple experimental paradigm and theoretical framework to advance investigations of the neural basis of path integration.
Assuntos
Drosophila , Alimentos , AnimaisRESUMO
Foraging animals may benefit from remembering the location of a newly discovered food patch while continuing to explore nearby [1, 2]. For example, after encountering a drop of yeast or sugar, hungry flies often perform a local search [3, 4]. That is, rather than remaining on the food or simply walking away, flies execute a series of exploratory excursions during which they repeatedly depart and return to the resource. Fruit flies, Drosophila melanogaster, can perform this food-centered search behavior in the absence of external landmarks, instead relying on internal (idiothetic) cues [5]. This path-integration behavior may represent a deeply conserved navigational capacity in insects [6, 7], but its underlying neural basis remains unknown. Here, we used optogenetic activation to screen candidate cell classes and found that local searches can be initiated by diverse sensory neurons. Optogenetically induced searches resemble those triggered by actual food, are modulated by starvation state, and exhibit key features of path integration. Flies perform tightly centered searches around the fictive food site, even within a constrained maze, and they can return to the fictive food site after long excursions. Together, these results suggest that flies enact local searches in response to a wide variety of food-associated cues and that these sensory pathways may converge upon a common neural system for navigation. Using a virtual reality system, we demonstrate that local searches can be optogenetically induced in tethered flies walking on a spherical treadmill, laying the groundwork for future studies to image the brain during path integration. VIDEO ABSTRACT.
Assuntos
Sinais (Psicologia) , Drosophila melanogaster/fisiologia , Alimentos , Células Receptoras Sensoriais/fisiologia , Animais , Comportamento Exploratório/fisiologia , FemininoRESUMO
While most animals thermotax only to regulate their temperature, female mosquitoes are attracted to human body heat during pursuit of a blood meal. Here we elucidate the basic rules of Aedes aegypti thermotaxis and test the function of candidate thermoreceptors in this important behavior. We show that host-seeking mosquitoes are maximally attracted to thermal stimuli approximating host body temperatures, seeking relative warmth while avoiding both relative cool and stimuli exceeding host body temperature. We found that the cation channel TRPA1, in addition to playing a conserved role in thermoregulation and chemosensation, is required for this specialized host-selective thermotaxis in mosquitoes. During host-seeking, AaegTRPA1(-/-) mutants failed to avoid stimuli exceeding host temperature, and were unable to discriminate between host-temperature and high-temperature stimuli. TRPA1-dependent tuning of thermotaxis is likely critical for mosquitoes host-seeking in a complex thermal environment in which humans are warmer than ambient air, but cooler than surrounding sun-warmed surfaces.