Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Environ Sci Technol ; 50(4): 1941-8, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26777061

RESUMO

Biochars are obtained by pyrolyzing biomass materials and are increasingly used within the agricultural sector. Owing to the production process, biochars can contain polycyclic aromatic hydrocarbons (PAHs) in the high mg/kg range, which makes the determination of the environmental exposure of PAHs originating from biochars relevant. However, PAH sorption to biochar is characterized by very high (10(4)-10(6) L/kg) or extreme distribution coefficients (KD) (>10(6) L/kg), which makes the determination of exposure scientifically and technically challenging. Cyclodextrin extractions, sorptive bioaccessibility extractions, Tenax extractions, contaminant traps, and equilibrium sampling were assessed and selected methods used for the determination of bioavailability parameters for PAHs in two model biochars. Results showed that: (1) the KD values of typically 10(6)-10(9) L/kg made the biochars often act as sinks, rather than sources, of PAHs. (2) Equilibrium sampling yielded freely dissolved concentrations (pg-ng/L range) that were below or near environmental background levels. (3) None of the methods were found to be suitable for the direct measurement of the readily desorbing fractions of PAHs (i.e., bioacessibility) in the two biochars. (4) The contaminant-trap method yielded desorption-resistant PAH fractions of typically 90-100%, implying bioaccessibility in the high µg/kg to low mg/kg range.


Assuntos
Carvão Vegetal/química , Exposição Ambiental , Hidrocarbonetos Policíclicos Aromáticos/química , Disponibilidade Biológica , Biomassa , Humanos
2.
Environ Sci Technol ; 50(21): 11797-11805, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696834

RESUMO

Different methods to quantify soil porewater concentrations of contaminants will provide different types of information. Passive sampling measurements give freely dissolved porewater concentrations (Cpw,free), while leaching tests provide information on the mobile concentration (Cpw,leach), including contaminants associated with dissolved organic carbon (DOC) and particles/colloids in the porewater. This study presents a novel combination of these two measurements, to study the sorption and mobility of polycyclic aromatic compounds (PACs) to DOC and particulate organic carbon (POC) in 10 historically contaminated soils. The PACs investigated were polycyclic aromatic hydrocarbons (PAHs), oxygenated-PAHs, and nitrogen containing heterocyclic PACs. Observed Cpw,leach was up to 5 orders of magnitude higher than Cpw,free; implying large biases when Cpw,leach is used to assess bioavailability or soil partitioning. Sorption of PACs to DOC and POC was important for the mobility of compounds with log KOW > 4. Average DOC/water-partitioning coefficients (KDOC) correlated well with KOW (log KDOC = 0.89 × log KOW +1.03 (r2 = 0.89)). This relationship is likely more accurate for historically contaminated soils than previously published data, which suffer from artifacts caused by problems in measuring Cpw,free correctly or not using historically contaminated soils. POC/water-partitioning coefficients (KPOC) were orders of magnitude larger than corresponding KDOC, suggesting sorption to mobile particles/colloids is the dominant mechanism for PAC mobility.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Solo , Carbono , Coloides , Compostos Policíclicos , Poluentes Químicos da Água
3.
Environ Sci Technol ; 48(9): 4664-71, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24678863

RESUMO

Biochar is the product of incomplete combustion (pyrolysis) of organic material. In rural areas, it can be used as a soil amendment to increase soil fertility. Fuel-constrained villagers may however prefer to use biochar briquettes as a higher-value fuel for cooking over applying it to soils. A systems-oriented analysis using life cycle assessment (LCA) and cost benefit analysis (CBA) was conducted to analyze these two alternative uses of biochar, applying the study to a rural village system in Indonesia. The results showed soil amendment for enhanced agricultural production to be the preferential choice with a positive benefit to the baseline scenario of -26 ecopoints (LCA) and -173 USD (CBA) annually pr. household. In this case, the positive effects of carbon sequestration to the soil and the economic value of the increased agricultural production outweighed the negative environmental impacts from biochar production and the related production costs. Use of biochar in briquettes for cooking fuel yielded negative net effects in both the LCA and CBA (85 ecopoints and 176 USD), even when positive health effects from reduced indoor air pollution were included. The main reasons for this are that emissions during biochar production are not compensated by carbon sequestration and that briquette making is labor-intensive. The results emphasize the importance of investigating and documenting the carbon storage effect and the agricultural benefit in biochar production-utilization systems for a sustainable use. Further research focus on efficient production is necessary due to the large environmental impact of biochar production. In addition, biochar should continue to be used in those soils where the agricultural effect is most beneficial.


Assuntos
Carvão Vegetal , Meio Ambiente , Fertilizantes , População Rural , Fatores Socioeconômicos , Solo , Agricultura/métodos , Carbono , Indonésia
4.
Environ Sci Technol ; 48(19): 11187-95, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25216345

RESUMO

Soil quality standards are based on partitioning and toxicity data for laboratory-spiked reference soils, instead of real world, historically contaminated soils, which would be more representative. Here 21 diverse historically contaminated soils from Sweden, Belgium, and France were obtained, and the soil-porewater partitioning along with the bioaccumulation in exposed worms (Enchytraeus crypticus) of native polycyclic aromatic compounds (PACs) were quantified. The native PACs investigated were polycyclic aromatic hydrocarbons (PAHs) and, for the first time to be included in such a study, oxygenated-PAHs (oxy-PAHs) and nitrogen containing heterocyclic PACs (N-PACs). The passive sampler polyoxymethylene (POM) was used to measure the equilibrium freely dissolved porewater concentration, Cpw, of all PACs. The obtained organic carbon normalized partitioning coefficients, KTOC, show that sorption of these native PACs is much stronger than observed in laboratory-spiked soils (typically by factors 10 to 100), which has been reported previously for PAHs but here for the first time for oxy-PAHs and N-PACs. A recently developed KTOC model for historically contaminated sediments predicted the 597 unique, native KTOC values in this study within a factor 30 for 100% of the data and a factor 3 for 58% of the data, without calibration. This model assumes that TOC in pyrogenic-impacted areas sorbs similarly to coal tar, rather than octanol as typically assumed. Black carbon (BC) inclusive partitioning models exhibited substantially poorer performance. Regarding bioaccumulation, Cpw combined with liposome-water partition coefficients corresponded better with measured worm lipid concentrations, Clipid (within a factor 10 for 85% of all PACs and soils), than Cpw combined with octanol-water partition coefficients (within a factor 10 for 76% of all PACs and soils). E. crypticus mortality and reproducibility were also quantified. No enhanced mortality was observed in the 21 historically contaminated soils despite expectations from PAH spiked reference soils. Worm reproducibility weakly correlated to Clipid of PACs, though the contributing influence of metal concentrations and soil texture could not be taken into account. The good agreement of POM-derived Cpw with independent soil and lipid partitioning models further supports that soil risk assessments would improve by accounting for bioavailability. Strategies for including bioavailability in soil risk assessment are presented.


Assuntos
Oligoquetos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Animais , Bélgica , Disponibilidade Biológica , Monitoramento Ambiental/métodos , França , Oligoquetos/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Reprodutibilidade dos Testes , Solo/química , Poluentes do Solo/farmacocinética , Fuligem , Suécia , Água , Poluentes Químicos da Água/farmacocinética
5.
Chemosphere ; 355: 141750, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522671

RESUMO

Activated carbon (AC) has important industrial and environmental applications as it has excellent abilities to sorb contaminants such as per- and polyfluoroalkyl substances (PFAS). Current research aims to develop activated biochars (AB) from renewable biomass to replace AC that is produced from fossil feedstock. Both AC and AB are primarily comprised of condensed aromatic carbon (ConAC), the component that is the focus of this study. ConAC is characterized to determine its relationship with biochar activation conditions and PFAS sorption, which are understudied at present. Benzenepolycarboxylic acid (BPCA) markers for ConAC were quantified in steam-activated biochars (AB-Steam) and carbon dioxide-activated biochars (AB-CO2) prepared from waste timber at different temperatures (800, 850, 900 °C) and molar ratios of feedstock-carbon:steam (0.50 - 1.25). A non-activated biochar was also included as a reference. ConAC relative to total organic carbon content was higher in AB-Steam than in AB-CO2 (92 ± 2 % vs. 81 ± 11%). The ratio of benzenehexa- (B6CA) to benzenepentacarboxylic (B5CA) acids revealed that AB-Steam also had larger ConAC clusters than AB-CO2. These findings provide novel evidence that steam activation is more effective than CO2 activation in creating ConAC. To assess how ConAC impacts AB sorption abilities, AB-Steam were used to remediate PFAS from contaminated soils. The observed strong correlations between ConAC content and sorption of long-chain PFAS suggest the importance of hydrophobic interactions between PFAS tails and ConAC. Poor correlations for short-chain PFAS, on the other hand, indicated the existence of electrostatic repulsion interactions between PFAS head groups and ConAC. Collectively, these results explain the great ability of AB-Steam to sorb PFAS from contaminated soils (up to 100% remediation). More broadly, this work demonstrates that the BPCA method can be a valuable tool to assess the quality of biochars and other carbonaceous sorbents in relation to their production conditions or contaminant sorption abilities.


Assuntos
Dióxido de Carbono , Fluorocarbonos , Vapor , Adsorção , Carvão Vegetal/química , Solo
6.
PLoS One ; 19(4): e0300387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635536

RESUMO

Although biochar application to soils has been found to increase soil quality and crop yield, the biochar dispersion extent and its impacts on native soil organic carbon (SOC) has received relatively little attention. Here, the vertical and lateral migration of fine, intermediate and coarse-sized biochar (<0.5, 0.5-1 and 1-5 mm, respectively), applied at low and high doses (1.5-2 and 3-4% w/w, respectively), was tracked using stable isotope methods, along with its impact on native SOC stocks. Biochar was homogeneously mixed into the surface layer (0-7 cm depth) of a loamy sandy Acrisol in Zambia. After 4.5 y, 38-75% of the biochar carbon (BC) was lost from the applied layer and 4-25% was detected in lower soil layers (7-30 cm). Estimating BC mineralization to be no more than 8%, 25-60% was likely transported laterally out of the experimental plots. This conclusion was supported by observations of BC in the control plot and in soils up to 2 m outside of the experimental plots. These processes were likely progressive as recovery of BC in similar plots 1 year after application was greater in both surface and lower soil layers than after 4.5 y. Fine and intermediate-sized BC displayed the greatest downward migration (25.3 and 17.9%, respectively), particularly when applied at lower doses, suggesting its movement through soil inter-particle spaces. At higher dosages, fine and intermediate-sized particles may have clogged pore, so coarse biochar displayed the greatest downward migration when biochar was applied at higher doses. In the BC treatment plot soil profiles, native SOC stocks were reduced by 2.8 to 24.5% (18.4% on average), i.e. positive priming. However, some evidence suggested that the soils may switch to negative priming over time. The dispersion of biochar in soil should be considered when evaluating biochar's agronomic benefits and environmental effects.


Assuntos
Carbono , Solo , Carvão Vegetal , Agricultura/métodos
7.
Sci Total Environ ; 922: 170971, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408660

RESUMO

Sustainable and effective remediation technologies for the treatment of soil contaminated with per- and polyfluoroalkyl substances (PFAS) are greatly needed. This study investigated the effects of waste-based biochars on the leaching of PFAS from a sandy soil with a low total organic carbon content (TOC) of 0.57 ± 0.04 % impacted by PFAS from aqueous film forming foam (AFFF) dispersed at a former fire-fighting facility. Six different biochars (pyrolyzed at 700-900 °C) were tested, made from clean wood chips (CWC), waste timber (WT), activated waste timber (aWT), two digested sewage sludges (DSS-1 and DSS-2) and de-watered raw sewage sludge (DWSS). Up-flow column percolation tests (15 days and 16 pore volume replacements) with 1 % biochar indicated that the dominant congener in the soil, perfluorooctane sulphonic acid (PFOS) was retained best by the aWT biochar with a 99.9 % reduction in the leachate concentration, followed by sludge-based DWSS (98.9 %) and DSS-2 and DSS-1 (97.8 % and 91.6 %, respectively). The non-activated wood-based biochars (CWC and WT) on the other hand, reduced leaching by <42.4 %. Extrapolating this to field conditions, 90 % leaching of PFOS would occur after 15 y for unamended soil, and after 1200 y and 12,000 y, respectively, for soil amended with 1 % DWSS-amended and aWT biochar. The high effectiveness of aWT and the three sludge-based biochars in reducing PFAS leaching from the soil was attributed largely to high porosity in a pore size range (>1.5 nm) that can accommodate the large PFAS molecules (>1.02-2.20 nm) combined with a high affinity to the biochar matrix. Other factors like anionic exchange capacity could play a contributing role. Sorbent effectiveness was better for long-chain than for short-chain PFAS, due to weaker, apolar interactions between the biochar and the latter's shorter hydrophobic CF2-tails. The findings were the first to demonstrate that locally sourced activated wood-waste biochars and non-activated sewage sludge biochars could be suitable sorbents for the ex situ stabilization and in situ remediation of PFAS-contaminated soil, bringing this technology one step closer to full-scale field testing.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes do Solo , Esgotos/química , Madeira/química , Carvão Vegetal/química , Solo/química , Fluorocarbonos/análise , Poluentes do Solo/análise , Água/química
8.
Sci Total Environ ; 918: 170501, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38307289

RESUMO

Bio-based fertilizers (BBFs) produced from organic waste have the potential to reduce societal dependence on limited and energy-intensive mineral fertilizers. BBFs, thereby, contribute to a circular economy for fertilizers. However, BBFs can contain plastic fragments and hazardous additives such as phthalate plasticizers, which could constitute a risk for agricultural soils and the environment. This study assessed the exposure associated with plastic and phthalates in BBFs from three types of organic wastes: agricultural and food industry waste (AgriFoodInduWaste), sewage sludge (SewSludge), and biowaste (i.e., garden, park, food and kitchen waste). The wastes were associated with various treatments like drying, anaerobic digestion, and vermicomposting. The number of microplastics (0.045-5 mm) increased from AgriFoodInduWaste-BBFs (15-258 particles g-1), to SewSludge-BBFs (59-1456 particles g-1) and then to Biowaste-BBFs (828-2912 particles g-1). Biowaste-BBFs mostly contained packaging plastics (e.g., polyethylene terephthalate), with the mass of plastic (>10 g kg-1) exceeding the EU threshold (3 g kg-1, plastics >2 mm). Other BBFs mostly contained small (< 1 mm) non-packaging plastics in amounts below the EU limit. The calculated numbers of microplastics entering agricultural soils via BBF application was high (107-1010 microplastics ha-1y-1), but the mass of plastic released from AgriFoodInduWaste-BBFs and SewSludge-BBFs was limited (< 1 and <7 kg ha-1y-1) compared to Biowaste-BBFs (95-156 kg ha-1y-1). The concentrations of di(2-ethylhexyl)phthalate (DEHP; < 2.5 mg kg-1) and phthalate transformation products (< 8 mg kg-1) were low (< benchmark of 50 mg kg-1 for DEHP), attributable to both the current phase-out of DEHP as well as phthalate degradation during waste treatment. The Biowaste-BBF exposed to vermicomposting indicated that worms accumulated phthalate transformation products (4 mg kg-1). These results are overall positive for the implementation of the studied AgriFoodInduWaste-BBFs and SewSludge-BBFs. However, the safe use of the studied Biowaste-BBFs requires reducing plastic use and improving sorting methods to minimize plastic contamination, in order to protect agricultural soils and reduce the environmental impact of Biowaste-BBFs.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Plastificantes/análise , Plásticos , Fertilizantes , Microplásticos , Solo , Esgotos , Dibutilftalato
9.
Environ Sci Technol ; 52(19): 10911-10913, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30232880
10.
Environ Sci Technol ; 47(3): 1206-15, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23272937

RESUMO

Biochar amendment to soil is a potential technology for carbon storage and climate change mitigation. It may, in addition, be a valuable soil fertility enhancer for agricultural purposes in sandy and/or weathered soils. A life cycle assessment including ecological, health and resource impacts has been conducted for field sites in Zambia to evaluate the overall impacts of biochar for agricultural use. The life cycle impacts from conservation farming using cultivation growth basins and precision fertilization with and without biochar addition were in the present study compared to conventional agricultural methods. Three different biochar production methods were evaluated: traditional earth-mound kilns, improved retort kilns, and micro top-lit updraft (TLUD) gasifier stoves. The results confirm that the use of biochar in conservation farming is beneficial for climate change mitigation purposes. However, when including health impacts from particle emissions originating from biochar production, conservation farming plus biochar from earth-mound kilns generally results in a larger negative effect over the whole life cycle than conservation farming without biochar addition. The use of cleaner technologies such as retort kilns or TLUDs can overcome this problem, mainly because fewer particles and less volatile organic compounds, methane and carbon monoxide are emitted. These results emphasize the need for a holistic view on biochar use in agricultural systems. Of special importance is the biochar production technique which has to be evaluated from both environmental/climate, health and social perspectives.


Assuntos
Agricultura/métodos , Carvão Vegetal/química , Conservação dos Recursos Naturais , Meio Ambiente , Produtos Agrícolas/crescimento & desenvolvimento , Geografia , Zâmbia , Zea mays/crescimento & desenvolvimento
11.
Environ Sci Technol ; 47(2): 781-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23214413

RESUMO

Atmospheric deposition is a major pathway of PCDD/Fs to the Baltic Sea. We studied the aerosol-water distribution for aerosols collected close to the Baltic Sea in order to investigate the availability of pollutants sorbed to aerosols deposited on water. Aerosols were analyzed for both total concentration (Soxhlet extraction) and the freely dissolved water concentration (extraction with 17-µm polyoxymethylene equilibrium passive samplers). Concentrations of PCDD/F and sum PCB-7 in aerosols were 65-1300 pg/g dw TEQ and 22-100 ng/g dw, respectively. Organic carbon (OC)-normalized aerosol-water distribution ratios (K(aer-water,OC)) were consistently lower (factor 2-60) than previously determined sediment organic carbon-water distribution ratios (K(sed,OC)). Hence PCDD/Fs and PCBs entering the Baltic Sea through aerosol deposition seem to be more available for desorption to the water phase than PCDD/Fs and PCBs sorbed to sediment. Further, we investigated whether aerosol-water distribution may be predicted from the air-aerosol partitioning constant multiplied by the Henry's Law constant. This proposed model for aerosol-water distribution underestimated measured values for PCBs by factors of 1-17 and for PCDD/Fs by more than a factor 10. These findings can be used to improve future fate modeling of PCBs and PCDD/Fs in marine environments and specifically the Baltic Sea.


Assuntos
Aerossóis/análise , Benzofuranos/análise , Poluentes Ambientais/análise , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análogos & derivados , Água/análise , Adsorção , Dibenzofuranos Policlorados , Sedimentos Geológicos/análise , Modelos Químicos , Oceanos e Mares , Dibenzodioxinas Policloradas/análise , Solubilidade
12.
Environ Sci Technol ; 47(12): 6431-9, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23668960

RESUMO

Antimony (Sb) in lead bullets poses a major environmental risk in shooting range soils. Here we studied the effect of iron (Fe)-based amendments on the mobility of Sb in contaminated soil from shooting ranges in Norway. Untreated soil showed high Sb concentrations in water extracts from batch tests (0.22-1.59 mg L(-1)) and soil leachate from column tests (0.3-0.7 mg L(-1)), occurring exclusively as Sb(V). Sorption of Sb to different iron-based sorbents was well described by the Freundlich equation (Fe2(SO4)3, log KF = 6.35, n = 1.51; CFH-12 (Fe oxyhydroxide), log KF = 4.16-4.32, n = 0.75-0.76); Fe(0) grit, log KF = 3.26, n = 0.47). These sorbents mixed with soil (0.5 and 2% w/w), showed significant sorption of Sb in batch tests (46-92%). However, for Fe2(SO4)3 and CFH-12 liming was also necessary to prevent mobilization of lead, copper, and zinc. Column tests showed significant retention of Sb (89-98%) in soil amended with CFH-12 (2%) mixed with limestone (1%) compared to unamended soil. The sorption capacity of soils amended with Fe(0) (2%) increased steadily up to 72% over the duration period of the column test (64 days), most likely due to the gradual oxidation of Fe(0) to Fe oxyhydroxides. Based on the experimental results, CFH-12 and oxidized Fe(0) are effective amendments for the stabilization of Sb in shooting range soils.


Assuntos
Antimônio/química , Poluentes do Solo/química , Solo/química , Cobre/química , Ferro/química , Zinco/química
13.
Environ Sci Technol ; 47(15): 8674-83, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23802136

RESUMO

The aim of the present study was to evaluate the secondary ecotoxicological effects of soil amendment materials that can be added to contaminated soils in order to sequester harmful pollutants. To this end, a nonpolluted agricultural soil was amended with 0.5, 2, and 5% of the following four amendments: powder activated carbon (PAC), granular activated carbon, corn stover biochar, and ferric oxyhydroxide powder, which have previously been proven to sequester pollutants in soil. The resulting immediate effects (i.e., without aging the mixtures before carrying out tests) on the springtail Folsomia candida, the earthworm species Aporectodea caliginosa and Eisenia fetida, the marine bacteria Vibrio fischeri, a suite of ten prokaryotic species, and a eukaryote (the yeast species Pichia anomalia) were investigated. Reproduction of F. candida was significantly increased compared to the unamended soil when 2% biochar was added to it. None of the treatments caused a negative effect on reproduction. All amendments had a deleterious effect on the growth of A. caliginosa when compared to the unamended soil, except the 0.5% amendment of biochar. In avoidance tests, E. fetida preferred biochar compared to all other amendments including the unamended soil. All amendments reduced the inhibition of luminescence to V. fischeri, i.e., were beneficial for the bacteria, with PAC showing the greatest improvement. The effects of the amendments on the suite of prokaryotic species and the eukaryote were variable, but overall the 2% biochar dose provided the most frequent positive effect on growth. It is concluded that the four soil amendments had variable but never strongly deleterious effects on the bacteria and invertebrates studied here during the respective recommended experimental test periods.


Assuntos
Bactérias/efeitos dos fármacos , Carbono/farmacologia , Carvão Vegetal , Compostos Férricos/farmacologia , Invertebrados/efeitos dos fármacos , Microbiologia do Solo , Solo/química , Animais , Invertebrados/fisiologia
14.
Environ Sci Technol ; 47(14): 7704-12, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23758057

RESUMO

Suppression of nitrous oxide (N2O) emissions from soil is commonly observed after amendment with biochar. The mechanisms accounting for this suppression are not yet understood. One possible contributing mechanism is N2O sorption to biochar. The sorption of N2O and carbon dioxide (CO2) to four biochars was measured in an anhydrous system with pure N2O. The biochar data were compared to those for two activated carbons and other components potentially present in soils-uncharred pine wood and peat-and five inorganic metal oxides with variable surface areas. Langmuir maximum sorption capacities (Qmax) for N2O on the pine wood biochars (generated between 250 and 500 °C) and activated carbons were 17-73 cm(3) g(-1) at 20 °C (median 51 cm(3) g(-1)), with Langmuir affinities (b) of 2-5 atm(-1) (median 3.4 atm(-1)). Both Qmax and b of the charred materials were substantially higher than those for peat, uncharred wood, and metal oxides [Qmax 1-34 cm(3) g(-1) (median 7 cm(3) g(-1)); b 0.4-1.7 atm(-1) (median 0.7 atm(-1))]. This indicates that biochar can bind N2O more strongly than both mineral and organic soil materials. Qmax and b for CO2 were comparable to those for N2O. Modeled sorption coefficients obtained with an independent polyparameter-linear free-energy relationship matched measured data within a factor 2 for mineral surfaces but underestimated by a factor of 5-24 for biochar and carbonaceous surfaces. Isosteric enthalpies of sorption of N2O were mostly between -20 and -30 kJ mol(-1), slightly more exothermic than enthalpies of condensation (-16.1 kJ mol(-1)). Qmax of N2O on biochar (50000-130000 µg g(-1) biochar at 20 °C) exceeded the N2O emission suppressions observed in the literature (range 0.5-960 µg g(-1) biochar; median 16 µg g(-1)) by several orders of magnitude. Thus, the hypothesis could not be falsified that sorption of N2O to biochar is a mechanism of N2O emission suppression.


Assuntos
Carvão Vegetal , Compostos Inorgânicos/química , Óxido Nitroso/química , Compostos Orgânicos/química , Água/química , Modelos Teóricos , Termodinâmica , Madeira/química
15.
Sci Total Environ ; 903: 166547, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37640066

RESUMO

Flame curtain kilns have emerged as the preferred biochar technology for smallholders but reported methane emissions (30 g kg-1 biochar) have impeded carbon certification. Here, for flame curtain kilns we show almost no methane (0-3.6 g kg-1 biochar) emissions for dry (<15 % moisture) feedstock consisting of twigs and leaves. Wet feedstock (>40 % moisture) however generated significant methane (>500 g kg-1 biochar), underscoring that feedstock preparation is decisive for the carbon balance. Even for dry feedstock, both aerosol and CO emissions were significant (21-82 and 40-118 g kg-1 biochar, respectively). The data demonstrate that certification of low-tech biochar made from dry twigs and leaves should not be objected to on the grounds of methane. Careful selection of feedstock and potential after-combustion of the syn-gases are probably needed to avoid CO and aerosol emissions. More data are needed on methane emissions of other dry feedstocks.

16.
J Hazard Mater ; 445: 130449, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36459882

RESUMO

The use of sewage sludge to produce biochar-based sorbents for per- and polyfluoroalkyl substances (PFAS) removal from water and soil may be an economically and environmentally sustainable waste management option. This study compared the sorption of six perfluorinated carboxylic acids (PFCAs) by two sewage sludge biochars (SSBCs) and one wood chip biochar (WCBC), dry pyrolyzed at 700 °C. Batch sorption tests were conducted by adding individual PFCAs and a PFCA-mixture to pure biochars and mixtures of biochar and a sandy soil (1.3% TOC). PFAS-sorption to the SSBCs exhibited log-linear biochar-water distribution coefficients (log Kd), comparable to those previously reported for commercial activated carbons (e.g., 5.73 ± 0.02 for perfluorooctanoic acid at 1 µg/L). The strong sorption of PFCAs was attributed to the SSBCs relatively high pore volumes in the pore size range that can accommodate these compounds. Sorption was attenuated by the presence of soil (by factors 3-10), by the presence of a mixture of PFCAs (by factors of 6-532) and by both together (by factors of 8-6581), indicating strongly competitive sorption between PFCA-congeners, and less severe sorption attenuation by soil organic matter. These findings could enable sustainable value chains for SSBs in soil remediation and water filtration solutions.


Assuntos
Fluorocarbonos , Poluentes do Solo , Esgotos , Carvão Vegetal , Solo , Água , Adsorção , Poluentes do Solo/análise
17.
J Hazard Mater ; 454: 131447, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121036

RESUMO

Current treatment options for organic waste contaminated with per- and polyfluoroalkyl substances (PFAS) are generally limited to incineration, composting or landfilling, all resulting in emissions. Dry pyrolysis is a promising emerging alternative to these practices, but there is uncertainty related to the fate of PFAS during this process. The present work first developed a robust method for the determination of PFAS in complex matrices, such as sewage sludge and biochar. Then, a mass balance was established for 56 different PFAS during full-scale pyrolysis (2-10 kg biochar hr-1, 500-800 °C) of sewage sludges, food waste reject, garden waste and waste timber. PFAS were found in all wastes (56-3651 ng g-1), but pyrolysis resulted in a ≥ 96.9% removal. Residual PFAS (0.1-3.4 ng g-1) were detected in biochars obtained at temperatures up to 750 °C and were dominated by long chain PFAS. Emitted PFAS loads ranged from 0.01 to 3.1 mg tonne-1 of biochar produced and were dominated by short chain PFAS. Emissions made up < 3% of total PFAS-mass in the wastes. Remaining uncertainties are mainly related to the presence of thermal degradation products in flue gas and condensation oils.

18.
Environ Sci Technol ; 46(9): 5057-66, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22455603

RESUMO

We collected urban soil samples impacted by polycyclic aromatic hydrocarbons (PAHs) from a sorbent-based remediation field trial to address concerns about unwanted side-effects of 2% powdered (PAC) or granular (GAC) activated carbon amendment on soil microbiology and pollutant biodegradation. After three years, total microbial cell counts and respiration rates were highest in the GAC amended soil. The predominant bacterial community structure derived from denaturing gradient gel electrophoresis (DGGE) shifted more strongly with time than in response to AC amendment. DGGE band sequencing revealed the presence of taxa with closest affiliations either to known PAH degraders, e.g. Rhodococcus jostii RHA-1, or taxa known to harbor PAH degraders, e.g. Rhodococcus erythropolis, in all soils. Quantification by real-time polymerase chain reaction yielded similar dioxygenases gene copy numbers in unamended, PAC-, or GAC-amended soil. PAH availability assessments in batch tests showed the greatest difference of 75% with and without biocide addition for unamended soil, while the lowest PAH availability overall was measured in PAC-amended, live soil. We conclude that AC had no detrimental effects on soil microbiology, AC-amended soils retained the potential to biodegrade PAHs, but the removal of available pollutants by biodegradation was most notable in unamended soil.


Assuntos
Carvão Vegetal/farmacologia , Consórcios Microbianos/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo , Adsorção , Biodegradação Ambiental , Eletroforese em Gel de Gradiente Desnaturante , Reação em Cadeia da Polimerase , Poluentes do Solo/metabolismo
19.
Environ Sci Technol ; 46(2): 810-7, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22128748

RESUMO

Activated carbon (AC) amendment to polluted sediment or soil is an emerging in situ treatment technique that reduces freely dissolved porewater concentrations and subsequently reduces the ecological and human health risk of hydrophobic organic compounds (HOCs). An important question is the capacity of the amended AC after prolonged exposure in the field. To address this issue, sorption of freshly spiked and native HOCs to AC aged under natural field conditions and fresh AC amendments was compared for one soil and two sediments. After 12-32 months of field aging, all AC amendments demonstrated effectiveness for reducing pore water concentrations of both native (30-95%) and spiked (10-90%) HOCs compared to unamended sediment or soil. Values of K(AC) for field-aged AC were lower than freshly added AC for spiked HOCs up to a factor of 10, while the effect was less for native HOCs. The different behavior in sorbing native HOCs compared to freshly spiked HOCs was attributed to differences in the sorption kinetics and degree of competition for sorption sites between the contaminants and pore-clogging natural organic matter. The implications of these findings are that amended AC can still be effective in sorbing additional HOCs some years following amendment in the field. Thus, a certain level of long-term sustainability of this remediation approach is observed, but conclusions for decade-long periods cannot be drawn solely based on the present study.


Assuntos
Carbono/química , Sedimentos Geológicos/química , Compostos Orgânicos/química , Poluentes do Solo/química , Solo/química , Poluentes Químicos da Água/química , Adsorção , Monitoramento Ambiental , Rios/química
20.
Environ Sci Technol ; 46(21): 12030-7, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23046183

RESUMO

A large-scale field experiment on in situ thin-layer capping was carried out in the polychlorinated dibenzodioxin and dibenzofuran (PCDD/F) contaminated Grenlandsfjords, Norway. The main focus of the trial was to test the effectiveness of active caps (targeted thickness of 2.5 cm) consisting of powdered activated carbon (AC) mixed into locally dredged clean clay. Nonactive caps (targed thickness of 5 cm) consisting of clay without AC as well as crushed limestone were also tested. Fields with areas of 10,000 to 40,000 m(2) were established at 30 to 100 m water depth. Auxiliary shaken laboratory batch experiments showed that 2% of the applied powdered AC substantially reduced PCDD/F porewater concentrations, by >90% for tetra-, penta- and hexa-clorinated congeners to 60-70% for octachlorinated ones. In-situ AC profiles revealed that the AC was mixed into the sediment to 3 to 5 cm depth in 20 months. Only around 25% of the AC was found inside the pilot fields. Sediment-to-water PCDD/F fluxes measured by in situ diffusion chambers were significantly lower at the capped fields than at reference fields in the same fjord, reductions being largest for the limestone (50-90%) followed by clay (50-70%), and the AC + clay (60%). Also reductions in overlying aqueous PCDD/F concentrations measured by passive samplers were significant in most cases (20-40% reduction), probably because of the large size of the trial fields. The AC was less effective in the field than in the laboratory, probably due to prolonged sediment-to-AC mass transfer times for PCDD/Fs and field factors such as integrity of the cap, new deposition of contaminated sediment particles, and bioturbation. The present field data indicate that slightly thicker layers of limestone and dredged clay can show as good physicochemical effectiveness as thin caps of AC mixed with clay, at least for PCDD/Fs during the first two years after cap placement.


Assuntos
Benzofuranos , Recuperação e Remediação Ambiental/métodos , Sedimentos Geológicos , Dibenzodioxinas Policloradas/análogos & derivados , Poluentes Químicos da Água , Silicatos de Alumínio , Carbonato de Cálcio , Carbono , Argila , Dibenzofuranos Policlorados , Estuários , Noruega , Projetos Piloto , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA