Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Physiol ; 601(24): 5655-5667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37983196

RESUMO

Pancreatic beta cells secrete insulin in response to plasma glucose. The ATP-sensitive potassium channel (KATP ) links glucose metabolism to islet electrical activity in these cells by responding to increased cytosolic [ATP]/[ADP]. It was recently proposed that pyruvate kinase (PK) in close proximity to beta cell KATP locally produces the ATP that inhibits KATP activity. This proposal was largely based on the observation that applying phosphoenolpyruvate (PEP) and ADP to the cytoplasmic side of excised inside-out patches inhibited KATP . To test the relative contributions of local vs. mitochondrial ATP production, we recorded KATP activity using mouse beta cells and INS-1 832/13 cells. In contrast to prior reports, we could not replicate inhibition of KATP activity by PEP + ADP. However, when the pH of the PEP solutions was not corrected for the addition of PEP, strong channel inhibition was observed as a result of the well-known action of protons to inhibit KATP . In cell-attached recordings, perifusing either a PK activator or an inhibitor had little or no effect on KATP channel closure by glucose, further suggesting that PK is not an important regulator of KATP . In contrast, addition of mitochondrial inhibitors robustly increased KATP activity. Finally, by measuring the [ATP]/[ADP] responses to imposed calcium oscillations in mouse beta cells, we found that oxidative phosphorylation could raise [ATP]/[ADP] even when ADP was at its nadir during the burst silent phase, in agreement with our mathematical model. These results indicate that ATP produced by mitochondrial oxidative phosphorylation is the primary controller of KATP in pancreatic beta cells. KEY POINTS: Phosphoenolpyruvate (PEP) plus adenosine diphosphate does not inhibit KATP activity in excised patches. PEP solutions only inhibit KATP activity if the pH is unbalanced. Modulating pyruvate kinase has minimal effects on KATP activity. Mitochondrial inhibition, in contrast, robustly potentiates KATP activity in cell-attached patches. Although the ADP level falls during the silent phase of calcium oscillations, mitochondria can still produce enough ATP via oxidative phosphorylation to close KATP . Mitochondrial oxidative phosphorylation is therefore the main source of the ATP that inhibits the KATP activity of pancreatic beta cells.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Células Secretoras de Insulina/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato/farmacologia , Piruvato Quinase/metabolismo , Piruvato Quinase/farmacologia , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo
2.
J Biol Chem ; 298(9): 102356, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35952761

RESUMO

Anthelmintics are used to treat human and veterinary parasitic diseases and to reduce crop and livestock production loss associated with parasitosis. The free-living nematode Caenorhabditis elegans, a model system for anthelmintic drug discovery, has a serotonin (5-HT)-gated chloride channel, MOD-1, which belongs to the Cys-loop receptor family and modulates locomotory and behavioral functions. Since MOD-1 is unique to nematodes, it is emerging as an attractive anthelmintic drug target, but details of MOD-1 function are unclear. Here, we revealed novel aspects of MOD-1 function from the molecular level to the organism level and identified compounds targeting this receptor, which may provide new directions for anthelmintic drug discovery. We used whole-cell current recordings from heterologously expressed MOD-1 to show that tryptamine (Tryp), a weak partial agonist of vertebrate serotonin type 3 (5-HT3) receptors, efficaciously activates MOD-1. A screen for modulators revealed that GABAergic ligands piperazine (PZE) and muscimol reduce 5-HT-elicited currents, thus identifying novel MOD-1 allosteric inhibitors. Next, we performed locomotor activity assays, and we found 5-HT and Tryp rapidly decrease worm motility, which is reversible only at low 5-HT concentrations. Mutants lacking MOD-1 are partially resistant to both drugs, demonstrating its role in locomotion. Acting as an antagonist of MOD-1, we showed PZE reduces the locomotor effects of exogenous 5-HT. Therefore, Tryp- and PZE-derived compounds, acting at MOD-1 through different molecular mechanisms, emerge as promising anthelmintic agents. This study enhances our knowledge of the function and drug selectivity of Cys-loop receptors and postulates MOD-1 as a potential target for anthelmintic therapy.


Assuntos
Anti-Helmínticos , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína , Nematoides , Animais , Anti-Helmínticos/farmacologia , Caenorhabditis elegans/genética , Canais de Cloreto/genética , Humanos , Muscimol/farmacologia , Piperazinas/farmacologia , Serotonina/farmacologia
3.
Mol Pharmacol ; 101(3): 154-167, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34969831

RESUMO

Alzheimer's disease is a multifactorial neurodegenerative disorder. Since cholinergic deficit is a major factor in this disease, two molecular targets for its treatment are the acetylcholinesterase (AChE) and the nicotinic acetylcholine receptors (nAChRs). Given that caffeine is a natural compound that behaves as an AChE inhibitor and as a partial agonist of nAChRs, the aim of this work was to synthetize more potent bifunctional caffeine analogs that modulate these two molecular targets. To this end, a theophylline structure was connected to a pyrrolidine structure through a methylene chain of different lengths (3 to 7 carbon atoms) to give compounds 7-11 All caffeine derivatives inhibited the AChE, of which compound 11 showed the strongest effect. Electrophysiological studies showed that all compounds behave as agonists of the muscle and the neuronal α7 nAChR with greater potency than caffeine. To explore whether the different analogs could affect the nAChR conformational state, the nAChR conformational-sensitive probe crystal violet (CrV) was used. Compounds 9 and 10 conduced the nAChR to a different conformational state comparable with a control nAChR desensitized state. Finally, molecular docking experiments showed that all derivatives interacted with both the catalytic and anionic sites of AChE and with the orthosteric binding site of the nAChR. Thus, the new synthetized compounds can inhibit the AChE and activate muscle and α7 nAChRs with greater potency than caffeine, which suggests that they could be useful leaders for the development of new therapies for the treatment of different neurologic diseases. SIGNIFICANCE STATEMENT: In this work we synthetized caffeine derivatives which can inhibit acetylcholinesterase and activate both muscle and α7 nicotinic acetylcholine receptors (nAChRs) with higher potency than caffeine. These analogs can be divided into two groups: a non-desensitizing and a desensitizing nAChR group. From the nAChR non-desensitizing group, we propose compound 11 as the most interesting analog for further studies since it inhibits acetylcholinesterase with the highest potency and activates the nAChRs in the picomolar range without inducing receptor desensitization.


Assuntos
Cafeína/análogos & derivados , Cafeína/síntese química , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Cafeína/metabolismo , Cafeína/farmacologia , Electrophorus , Células HEK293 , Humanos , Simulação de Acoplamento Molecular/métodos , Estrutura Secundária de Proteína , Torpedo , Receptor Nicotínico de Acetilcolina alfa7/química
4.
Biophys J ; 119(8): 1670-1682, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32946769

RESUMO

The serotonin type 3 receptor (5-HT3) is a ligand-gated ion channel that converts the binding of the neurotransmitter serotonin (5-HT) into a transient cation current that mediates fast excitatory responses in peripheral and central nervous systems. Information regarding the activation and modulation of the human 5-HT3 type A receptor has been based only on macroscopic current measurements because of its low ion conductance. By constructing a high-conductance human 5-HT3A receptor, we here revealed mechanistic information regarding the orthosteric activation by 5-HT and by the partial agonist tryptamine, and the allosteric activation by the terpenoids, carvacrol, and thymol. Terpenoids potentiated macroscopic currents elicited by the orthosteric agonist and directly elicited currents with slow-rising phases and submaximal amplitudes. At the single-channel level, activation by orthosteric and allosteric agonists appeared as openings in quick succession (bursts) that showed no ligand concentration dependence. Bursts were grouped into long-duration clusters in the presence of 5-HT and even longer in the presence of terpenoids, whereas they remained isolated in the presence of tryptamine. Kinetic analysis revealed that allosteric and orthosteric activation mechanisms can be described by the same scheme that includes transitions of the agonist-bound receptor to closed intermediate states before opening (priming). Reduced priming explained the partial agonism of tryptamine; however, equilibrium constants for gating and priming were similar for 5-HT and terpenoid activation. Thus, our kinetic analysis revealed that terpenoids are efficacious agonists for 5-HT3A receptors. These findings not only extend our knowledge about the human 5-HT3A molecular function but also provide novel insights into the mechanisms of action of allosteric ligands, which are of increasing interest as therapeutic drugs in all the superfamily.


Assuntos
Agonistas do Receptor 5-HT3 de Serotonina , Serotonina , Regulação Alostérica , Humanos , Cinética , Receptores 5-HT3 de Serotonina/metabolismo
5.
J Biol Chem ; 293(27): 10707-10717, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29784875

RESUMO

The cholinergic α7 nicotinic receptor gene, CHRNA7, encodes a subunit that forms the homopentameric α7 receptor, involved in learning and memory. In humans, exons 5-10 in CHRNA7 are duplicated and fused to the FAM7A genetic element, giving rise to the hybrid gene CHRFAM7A Its product, dupα7, is a truncated subunit lacking part of the N-terminal extracellular ligand-binding domain and is associated with neurological disorders, including schizophrenia, and immunomodulation. We combined dupα7 expression on mammalian cells with patch clamp recordings to understand its functional role. Transfected cells expressed dupα7 protein, but they exhibited neither surface binding of the α7 antagonist α-bungarotoxin nor responses to acetylcholine (ACh) or to an allosteric agonist that binds to the conserved transmembrane region. To determine whether dupα7 assembles with α7, we generated receptors comprising α7 and dupα7 subunits, one of which was tagged with conductance substitutions that report subunit stoichiometry and monitored ACh-elicited channel openings in the presence of a positive allosteric α7 modulator. We found that α7 and dupα7 subunits co-assemble into functional heteromeric receptors, which require at least two α7 subunits for channel opening, and that dupα7's presence in the pentameric arrangement does not affect the duration of the potentiated events compared with that of α7. Using an α7 subunit mutant, we found that activation of (α7)2(dupα7)3 receptors occurs through ACh binding at the α7/α7 interfacial binding site. Our study contributes to the understanding of the modulation of α7 function by the human specific, duplicated subunit, associated with human disorders.


Assuntos
Acetilcolina/metabolismo , Bungarotoxinas/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Regulação Alostérica , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Subunidades Proteicas , Receptor Nicotínico de Acetilcolina alfa7/genética
6.
Mol Pharmacol ; 94(5): 1270-1279, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30190363

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels involved in neuromuscular transmission. In nematodes, muscle nAChRs are targets of antiparasitic drugs. Bephenium is an anthelmintic compound whose molecular action in the free-living nematode Caenorhabditis elegans, which is a model for anthelmintic drug discovery, is poorly known. We explored the effect of bephenium on C. elegans locomotion and applied single-channel recordings to identify its molecular target, mechanism of action, and selectivity between mammalian and C. elegans nAChRs. As in parasites, bephenium paralyzes C. elegans A mutant strain lacking the muscle levamisole-sensitive nAChR (L-AChR) shows full resistance to bephenium, indicating that this receptor is the target site. Bephenium activates L-AChR channels from larvae muscle cells in the micromolar range. Channel activity is similar to that elicited by levamisole, appearing mainly as isolated brief openings. Our analysis revealed that bephenium is an agonist of L-AChR and an open-channel blocker at higher concentrations. It also activates mammalian muscle nAChRs. Opening events are significantly briefer than those elicited by ACh and do not appear in activation episodes at a range of concentrations, indicating that it is a very weak agonist of mammalian nAChRs. Recordings in the presence of ACh showed that bephenium acts as a voltage-dependent channel blocker and a low-affinity agonist. Molecular docking into homology-modeled binding-site interfaces represent the binding mode of bephenium that explains its partial agonism. Given the great diversity of helminth nAChRs and the overlap of their pharmacological profiles, unraveling the basis of drug receptor-selectivity will be required for rational design of anthelmintic drugs.


Assuntos
Anti-Helmínticos/farmacologia , Compostos de Befênio/farmacologia , Caenorhabditis elegans/metabolismo , Levamisol/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Animais , Anti-Helmínticos/química , Comportamento Animal/efeitos dos fármacos , Compostos de Befênio/química , Sítios de Ligação , Caenorhabditis elegans/efeitos dos fármacos , Concentração Inibidora 50 , Técnicas de Patch-Clamp , Relação Estrutura-Atividade
7.
J Physiol ; 596(10): 1847-1861, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29131336

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels involved in many physiological and pathological processes. In vertebrates, there are seventeen different nAChR subunits that combine to yield a variety of receptors with different pharmacology, function, and localization. The homomeric α7 receptor is one of the most abundant nAChRs in the nervous system and it is also present in non-neuronal cells. It plays important roles in cognition, memory, pain, neuroprotection, and inflammation. Its diverse physiological actions and associated disorders have made of α7 an attractive novel target for drug modulation. Potentiation of the α7 receptor has emerged as a novel therapeutic strategy for several neurological diseases, such as Alzheimer's and Parkinson's diseases, and inflammatory disorders. In contrast, increased α7 activity has been associated with cancer cell proliferation. The presence of different drug target sites offers a great potential for α7 modulation in different pathological contexts. In particular, compounds that target allosteric sites offer significant advantages over orthosteric agonists due to higher selectivity and a broader spectrum of degrees and mechanisms of modulation. Heterologous expression of α7, together with chaperone proteins, combined with patch clamp recordings have provided important advances in our knowledge of the molecular basis of α7 responses and their potential modulation for pathological processes. This review gives a synthetic view of α7 and its molecular function, focusing on how its unique activation and desensitization features can be modified by pharmacological agents. This fundamental information offers insights into therapeutic strategies.


Assuntos
Agonistas Nicotínicos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Regulação Alostérica , Animais , Descoberta de Drogas , Humanos , Receptor Nicotínico de Acetilcolina alfa7/efeitos dos fármacos
8.
Mol Pharmacol ; 91(3): 250-262, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28069778

RESUMO

Nicotinic acetylcholine receptors can be assembled from either homomeric or heteromeric pentameric subunit combinations. At the interface of the extracellular domains of adjacent subunits lies the acetylcholine binding site, composed of a principal component provided by one subunit and a complementary component of the adjacent subunit. Compared with neuronal nicotinic acetylcholine cholinergic receptors (nAChRs) assembled from α and ß subunits, the α9α10 receptor is an atypical member of the family. It is a heteromeric receptor composed only of α subunits. Whereas mammalian α9 subunits can form functional homomeric α9 receptors, α10 subunits do not generate functional channels when expressed heterologously. Hence, it has been proposed that α10 might serve as a structural subunit, much like a ß subunit of heteromeric nAChRs, providing only complementary components to the agonist binding site. Here, we have made use of site-directed mutagenesis to examine the contribution of subunit interface domains to α9α10 receptors by a combination of electrophysiological and radioligand binding studies. Characterization of receptors containing Y190T mutations revealed unexpectedly that both α9 and α10 subunits equally contribute to the principal components of the α9α10 nAChR. In addition, we have shown that the introduction of a W55T mutation impairs receptor binding and function in the rat α9 subunit but not in the α10 subunit, indicating that the contribution of α9 and α10 subunits to complementary components of the ligand-binding site is nonequivalent. We conclude that this asymmetry, which is supported by molecular docking studies, results from adaptive amino acid changes acquired only during the evolution of mammalian α10 subunits.


Assuntos
Subunidades Proteicas/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Galinhas , Simulação de Acoplamento Molecular , Mutação/genética , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Ratos , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
9.
Mol Pharmacol ; 90(3): 288-99, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27190210

RESUMO

The nicotinic acetylcholine receptor (nAChR) belongs to a superfamily of pentameric ligand-gated ion channels involved in many physiologic and pathologic processes. Among nAChRs, receptors comprising the α7 subunit are unique because of their high Ca(2+) permeability and fast desensitization. nAChR agonists elicit a transient ion flux response that is further sustained by the release of calcium from intracellular sources. Owing to the dual ionotropic/metabotropic nature of α7 receptors, signaling pathways are activated. The α7 subunit is highly expressed in the nervous system, mostly in regions implicated in cognition and memory and has therefore attracted attention as a novel drug target. Additionally, its dysfunction is associated with several neuropsychiatric and neurologic disorders, such as schizophrenia and Alzheimer's disease. α7 is also expressed in non-neuronal cells, particularly immune cells, where it plays a role in immunity, inflammation, and neuroprotection. Thus, α7 potentiation has emerged as a therapeutic strategy for several neurologic and inflammatory disorders. With unique activation properties, the receptor is a sensitive drug target carrying different potential binding sites for chemical modulators, particularly agonists and positive allosteric modulators. Although macroscopic and single-channel recordings have provided significant information about the underlying molecular mechanisms and binding sites of modulatory compounds, we know just the tip of the iceberg. Further concerted efforts are necessary to effectively exploit α7 as a drug target for each pathologic situation. In this article, we focus mainly on the molecular basis of activation and drug modulation of α7, key pillars for rational drug design.


Assuntos
Descoberta de Drogas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Sítio Alostérico , Animais , Humanos , Canais Iônicos/metabolismo , Cinética , Sistema Nervoso/patologia , Receptor Nicotínico de Acetilcolina alfa7/química
10.
Proc Natl Acad Sci U S A ; 110(51): 20819-24, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297903

RESUMO

Neuronal α7 nicotinic receptors elicit rapid cation influx in response to acetylcholine (ACh) or its hydrolysis product choline. They contribute to cognition, synaptic plasticity, and neuroprotection and have been implicated in neurodegenerative and neuropsychiatric disorders. α7, however, often localizes distal to sites of nerve-released ACh and binds ACh with low affinity, and thus elicits its biological response with low agonist occupancy. To assess the function of α7 when ACh occupies fewer than five of its identical binding sites, we measured the open-channel lifetime of individual receptors in which four of the five ACh binding sites were disabled. To improve the time resolution of the inherently brief α7 channel openings, background mutations or a potentiator was used to increase open duration. We find that, in receptors with only one intact binding site, the open-channel lifetime is indistinguishable from receptors with five intact binding sites, counter to expectations from prototypical neurotransmitter-gated ion channels where the open-channel lifetime increases with the number of binding sites occupied by agonist. Replacing the membrane-embedded domain of α7 by that of the related 5-HT3A receptor increases the number of sites that need to be occupied to achieve the maximal open-channel lifetime, thus revealing a unique interdependence between the detector and actuator domains of these receptors. The distinctive ability of a single occupancy to elicit a full biological response adapts α7 to volume transmission, a prevalent mechanism of ACh-mediated signaling in the nervous system and nonneuronal cells.


Assuntos
Acetilcolina/química , Receptor Nicotínico de Acetilcolina alfa7/química , Acetilcolina/genética , Acetilcolina/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Mutação , Estrutura Terciária de Proteína , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Transdução de Sinais/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
11.
J Neurosci ; 34(50): 16865-76, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25505338

RESUMO

Partial agonists have emerged as attractive therapeutic molecules. 2-Me-5HT and tryptamine have been defined as partial agonists of 5-HT3 receptors on the basis of macroscopic measurements. Because several mechanisms may limit maximal responses, we took advantage of the high-conductance form of the mouse serotonin type 3A (5-HT3A) receptor to understand their molecular actions. Individual 5-HT-bound receptors activate in long episodes of high open probability, consisting of groups of openings in quick succession. The activation pattern is similar for 2-Me-5HT only at very low concentrations since profound channel blockade takes place within the activating concentration range. In contrast, activation episodes are significantly briefer in the presence of tryptamine. Generation of a full activation scheme reveals that the fully occupied receptor overcomes transitions to closed preopen states (primed states) before opening. Reduced priming explains the partial agonism of tryptamine. In contrast, 2-Me-5HT is not a genuine partial agonist since priming is not dramatically affected and its low apparent efficacy is mainly due to channel blockade. The analysis also shows that the first priming step is the rate-limiting step and partial agonists require an increased number of priming steps for activation. Molecular docking suggests that interactions are similar for 5-HT and 2-Me-5HT but slightly different for tryptamine. Our study contributes to understanding 5-HT3A receptor activation, extends the novel concept of partial agonism within the Cys-loop family, reveals novel aspects of partial agonism, and unmasks molecular actions of classically defined partial agonists. Unraveling mechanisms underlying partial responses has implications in the design of therapeutic compounds.


Assuntos
Agonismo Parcial de Drogas , Receptores 5-HT3 de Serotonina/metabolismo , Agonistas do Receptor 5-HT3 de Serotonina/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Receptores 5-HT3 de Serotonina/química , Agonistas do Receptor 5-HT3 de Serotonina/química
12.
J Neurosci ; 31(10): 3662-9, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21389221

RESUMO

Each subunit in a homopentameric Cys-loop receptor contains a specialized coupling region positioned between the agonist binding domain and the ion conductive channel. To determine the contribution of each coupling region to the stability of the open channel, we constructed a receptor subunit (α7-5-HT(3A)) with both a disabled coupling region and a reporter mutation that alters unitary conductance, and coexpressed normal and mutant subunits. The resulting receptors show single-channel current amplitudes that are quantized according to the number of reporter mutations per receptor, allowing correlation of the number of intact coupling regions with mean open time. We find that each coupling region contributes an equal increment to the stability of the open channel. However, by altering the numbers and locations of active coupling regions and binding sites, we find that a coupling region in a subunit flanked by inactive binding sites can still stabilize the open channel. We also determine minimal requirements for channel opening regardless of stability and find that channel opening can occur in a receptor with one active coupling region flanked by functional binding sites or with one active binding site flanked by functional coupling regions. The overall findings show that, whereas the agonist binding sites contribute interdependently and asymmetrically to open-channel stability, the coupling regions contribute independently and symmetrically.


Assuntos
Sítios de Ligação/fisiologia , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Ligação Proteica/fisiologia , Acetilcolina/metabolismo , Animais , Potenciais da Membrana , Camundongos , Técnicas de Patch-Clamp , Conformação Proteica , Receptores Nicotínicos/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Serotonina/metabolismo
13.
J Neurosci ; 31(39): 13870-9, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21957249

RESUMO

Potentiation of neuronal nicotinic acetylcholine receptors by exogenous ligands is a promising strategy for treatment of neurological disorders including Alzheimer's disease and schizophrenia. To gain insight into molecular mechanisms underlying potentiation, we examined ACh-induced single-channel currents through the human neuronal α7 acetylcholine receptor in the presence of the α7-specific potentiator PNU-120596 (PNU). Compared to the unusually brief single-channel opening episodes elicited by agonist alone, channel opening episodes in the presence of agonist and PNU are dramatically prolonged. Dwell time analysis reveals that PNU introduces two novel components into open time histograms, indicating at least two degrees of PNU-induced potentiation. Openings of the longest potentiated class coalesce into clusters whose frequency and duration change over a narrow range of PNU concentration. At PNU concentrations approaching saturation, these clusters last up to several minutes, prolonging the submillisecond α7 opening episodes by several orders of magnitude. Mutations known to reduce PNU potentiation at the whole-cell level still give rise to multisecond-long single-channel clusters. However mutation of five residues lining a cavity within each subunit's transmembrane domain abolishes PNU potentiation, defining minimal structural determinants of PNU potentiation.


Assuntos
Potenciais de Ação/fisiologia , Mutação/fisiologia , Receptores Nicotínicos/química , Receptores Nicotínicos/fisiologia , Células HEK293 , Humanos , Isoxazóis/farmacologia , Neurônios , Compostos de Fenilureia/farmacologia , Estrutura Secundária de Proteína/genética , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7
14.
Biophys J ; 100(1): 42-51, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21190655

RESUMO

Modulation of Cys-loop receptors by steroids is of physiological and therapeutical relevance. Nonetheless, its molecular mechanism has not been elucidated for serotonin (5-HT) type 3 receptors. We deciphered the mechanism of action of hydrocortisone (HC) at 5-HT type 3A receptors. Single-channel currents from the high-conductance form (∼4.7 pA, -70 mV) appear as a series of long opening events forming bursts, which group into long clusters. Although they are very infrequent, subconductance events (∼2.4 pA) are detected within clusters. HC produces a significant concentration-dependent reduction in open and burst durations, demonstrating open-channel block. In addition, it increases the appearance of subconductance levels in a concentration- and slightly voltage-dependent manner. The amplitude of the subconductance level does not change with HC concentration and its open duration is briefer than that of full amplitude events, indicating lower open-channel stability. Dual effects are distinguished from macroscopic responses: HC reduces amplitude by acting from either open or closed states, and it increases decay rates from the open state. Thus, HC acts as a negative modulator of 5-HT type 3A receptors by different mechanisms: It acts as an open-channel blocker and it favors opening to a preexisting subconductance level. The latter constitutes a novel, to our knowledge, mechanism of channel modulation, which might be applicable to other steroids and channels.


Assuntos
Hidrocortisona/farmacologia , Receptores 5-HT3 de Serotonina/metabolismo , Animais , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Modelos Moleculares , Estrutura Secundária de Proteína , Receptores 5-HT3 de Serotonina/química
15.
Front Mol Neurosci ; 14: 639720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613194

RESUMO

The α9α10 nicotinic acetylcholine receptor (nAChR) plays a fundamental role in inner ear physiology. It mediates synaptic transmission between efferent olivocochlear fibers that descend from the brainstem and hair cells of the auditory sensory epithelium. The α9 and α10 subunits have undergone a distinct evolutionary history within the family of nAChRs. Predominantly in mammalian vertebrates, the α9α10 receptor has accumulated changes at the protein level that may ultimately relate to the evolutionary history of the mammalian hearing organ. In the present work, we investigated the responses of α9α10 nAChRs to choline, the metabolite of acetylcholine degradation at the synaptic cleft. Whereas choline is a full agonist of chicken α9α10 receptors it is a partial agonist of the rat receptor. Making use of the expression of α9α10 heterologous receptors, encompassing wild-type, heteromeric, homomeric, mutant, chimeric, and hybrid receptors, and in silico molecular docking, we establish that the mammalian (rat) α10 nAChR subunit underscores the reduced efficacy of choline. Moreover, we show that whereas the complementary face of the α10 subunit does not play an important role in the activation of the receptor by ACh, it is strictly required for choline responses. Thus, we propose that the evolutionary changes acquired in the mammalian α9α10 nAChR resulted in the loss of choline acting as a full agonist at the efferent synapse, without affecting the triggering of ACh responses. This may have accompanied the fine-tuning of hair cell post-synaptic responses to the high-frequency activity of efferent medial olivocochlear fibers that modulate the cochlear amplifier.

16.
J Gen Physiol ; 152(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32702089

RESUMO

The α7 nicotinic acetylcholine receptor (nAChR) is among the most abundant types of nAChR in the brain, yet the ability of nerve-released ACh to activate α7 remains enigmatic. In particular, a major population of α7 resides in extra-synaptic regions where the ACh concentration is reduced, owing to dilution and enzymatic hydrolysis, yet ACh shows low potency in activating α7. Using high-resolution single-channel recording techniques, we show that extracellular calcium is a powerful potentiator of α7 activated by low concentrations of ACh. Potentiation manifests as robust increases in the frequency of channel opening and the average duration of the openings. Molecular dynamics simulations reveal that calcium binds to the periphery of the five ligand binding sites and is framed by a pair of anionic residues from the principal and complementary faces of each site. Mutation of residues identified by simulation prevents calcium from potentiating ACh-elicited channel opening. An anionic residue is conserved at each of the identified positions in all vertebrate species of α7. Thus, calcium associates with a novel structural motif on α7 and is an obligate cofactor in regions of limited ACh concentration.


Assuntos
Cálcio , Receptor Nicotínico de Acetilcolina alfa7 , Sítios de Ligação , Cálcio/metabolismo , Simulação de Dinâmica Molecular , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
17.
Biophys J ; 97(5): 1335-45, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19720021

RESUMO

The 5-HT(3)A receptor is a member of the Cys-loop family of ligand-gated ion channels. To perform kinetic analysis, we mutated the 5-HT3A subunit to obtain a high-conductance form so that single-channel currents can be detected. At all 5-HT concentrations (> 0.1 microM), channel activity appears as openings in quick succession that form bursts, which coalesce into clusters. By combining single-channel and macroscopic data, we generated a kinetic model that perfectly describes activation, deactivation, and desensitization. The model shows that full activation arises from receptors with three molecules of agonist bound. It reveals an earlier conformational change of the fully liganded receptor that occurs while the channel is still closed. From this pre-open closed state, the receptor enters into an open-closed cycle involving three open states, which form the cluster whose duration parallels the time constant of desensitization. A similar model lacking the pre-open closed state can describe the data only if the opening rates are fixed to account for the slow activation rate. The application of the model to M4 mutant receptors shows that position 10' contributes to channel opening and closing rates. Thus, our kinetic model provides a foundation for understanding structural bases of activation and drug action.


Assuntos
Modelos Biológicos , Receptores 5-HT3 de Serotonina/metabolismo , Animais , Linhagem Celular , Simulação por Computador , Humanos , Cinética , Potenciais da Membrana/fisiologia , Camundongos , Mutação , Técnicas de Patch-Clamp , Conformação Proteica , Receptores 5-HT3 de Serotonina/genética , Serotonina/metabolismo , Agonistas do Receptor 5-HT3 de Serotonina , Transfecção
18.
J Neurosci ; 28(31): 7808-19, 2008 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-18667613

RESUMO

The lifetimes of activated postsynaptic receptor channels contribute to the efficiency of synaptic transmission. Here we show that structural differences within the interface dividing extracellular and transmembrane domains of homomeric alpha7 and 5-HT(3A) receptors account for the large differences in open-channel lifetime and time of desensitization onset between these contrasting members of the Cys-loop receptor superfamily. For alpha7 receptors, agonist-evoked single-channel currents appear mainly as isolated brief openings (tau(o) = 0.35 ms), whereas macroscopic currents after a step pulse of agonist desensitize rapidly (tau(d) = 0.4 ms). In contrast for 5-HT(3A) receptors, agonist-evoked single-channel currents appear as clusters of many long openings in quick succession (tau(cluster) = 1.2 s), whereas macroscopic currents desensitize slowly (tau(d) = 1.1 s). A chimeric alpha7-5HT(3A) receptor exhibits functional properties intermediate between those of the parent receptors, but the functional signatures of each parent are reconstituted after substituting the major loops within the interface of the extracellular and transmembrane domains from the corresponding parent receptor. Furthermore, these structural loops contribute to open-channel lifetime and time of desensitization onset in a nonadditive manner. The results suggest that desensitization is the major determinant of the lifetimes of activated alpha7 and 5-HT(3A) receptors and that functional differences between the two receptors arise primarily through structural differences at the interface between extracellular and transmembrane domains.


Assuntos
Cisteína/fisiologia , Espaço Extracelular/fisiologia , Ativação do Canal Iônico/fisiologia , Proteínas de Membrana/fisiologia , Receptores Nicotínicos/fisiologia , Sequência de Aminoácidos , Animais , Cisteína/química , Cisteína/genética , Espaço Extracelular/genética , Humanos , Ativação do Canal Iônico/genética , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Antagonistas Nicotínicos/metabolismo , Estrutura Terciária de Proteína/genética , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/fisiologia , Antagonistas do Receptor 5-HT3 de Serotonina , Receptor Nicotínico de Acetilcolina alfa7
19.
Biochim Biophys Acta ; 1778(2): 521-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18036335

RESUMO

The nicotinic acetylcholine receptor (AChR) can be either hetero-pentameric, composed of alpha and non-alpha subunits, or homo-pentameric, composed of alpha7 subunits. To explore the subunit-selective contributions of transmembrane domains to channel gating we analyzed single-channel activity of chimeric muscle AChRs. We exchanged M3 between alpha1 and epsilon or alpha7 subunits. The replacement of M3 in alpha1 by epsilonM3 significantly alters activation properties. Channel activity appears as bursts of openings whose durations are 20-fold longer than those of wild-type AChRs. In contrast, 7-fold briefer openings are observed in AChRs containing the reverse epsilon chimeric subunit. The duration of the open state decreases with the increase in the number of alpha1M3 segments, indicating additive contributions of M3 of all subunits to channel closing. Each alpha1M3 segment decreases the energy barrier of the closing process by approximately 0.8 kcal/mol. Partial chimeric subunits show that small stretches of the M3 segment contribute additively to the open duration. The replacement of alpha1 sequence by alpha7 in M3 leads to 3-fold briefer openings whereas in M1 it leads to 10-fold prolonged openings, revealing that the subunit-selective role is unique to each transmembrane segment.


Assuntos
Ativação do Canal Iônico/fisiologia , Receptores Nicotínicos/fisiologia , Sequência de Aminoácidos , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Receptores Nicotínicos/química , Homologia de Sequência de Aminoácidos , Termodinâmica
20.
Front Cell Neurosci ; 13: 37, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800059

RESUMO

Amyloid ß peptide (Aß) is a key player in the development of Alzheimer's disease (AD). It is the primary component of senile plaques in AD patients and is also found in soluble forms. Cholinergic activity mediated by α7 nicotinic receptors has been shown to be affected by Aß soluble forms. To shed light into the molecular mechanism of this effect, we explored the direct actions of oligomeric Aß1-40 and Aß1-42 on human α7 by fluorescence spectroscopy and single-channel recordings. Fluorescence measurements using the conformational sensitive probe crystal violet (CrV) revealed that in the presence of Aß α7 undergoes concentration-dependent conformational changes. Exposure of α7 to 100 pM Aß changes CrV KD towards that of the desensitized state. However, α7 is still reactive to high carbamylcholine (Carb) concentrations. These observations are compatible with the induction of active/desensitized states as well as of a novel conformational state in the presence of both Aß and Carb. At 100 nM Aß, α7 adopts a resting-state-like structure which does not respond to Carb, suggesting stabilization of α7 in a blocked state. In real time, we found that Aß is capable of eliciting α7 channel activity either in the absence or presence of the positive allosteric modulator (PAM) PNU-120596. Activation by Aß is favored at picomolar or low nanomolar concentrations and is not detected at micromolar concentrations. At high Aß concentrations, the mean duration of activation episodes elicited by ACh in the presence of PNU-120596 is significantly reduced, an effect compatible with slow open-channel block. We conclude that Aß directly affects α7 function by acting as an agonist and a negative modulator. Whereas the capability of low concentrations of Aß to activate α7 could be beneficial, the reduced α7 activity in the presence of higher Aß concentrations or its long exposure may contribute to the cholinergic signaling deficit and may be involved in the initiation and development of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA