Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Eur Phys J E Soft Matter ; 44(11): 143, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34825973

RESUMO

In this review, we report recent progress in the field of supercooled water. Due to its uniqueness, water presents numerous anomalies with respect to most simple liquids, showing polyamorphism both in the liquid and in the glassy state. We first describe the thermodynamic scenarios hypothesized for the supercooled region and in particular among them the liquid-liquid critical point scenario that has so far received more experimental evidence. We then review the most recent structural indicators, the two-state model picture of water, and the importance of cooperative effects related to the fact that water is a hydrogen-bonded network liquid. We show throughout the review that water's peculiar properties come into play also when water is in solution, confined, and close to biological molecules. Concerning dynamics, upon mild supercooling water behaves as a fragile glass former following the mode coupling theory, and it turns into a strong glass former upon further cooling. Connections between the slow dynamics and the thermodynamics are discussed. The translational relaxation times of density fluctuations show in fact the fragile-to-strong crossover connected to the thermodynamics arising from the existence of two liquids. When considering also rotations, additional crossovers come to play. Mobility-viscosity decoupling is also discussed in supercooled water and aqueous solutions. Finally, the polyamorphism of glassy water is considered through experimental and simulation results both in bulk and in salty aqueous solutions. Grains and grain boundaries are also discussed.

2.
Eur Phys J E Soft Matter ; 44(11): 136, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779954

RESUMO

This review is devoted to discussing recent progress on the structure, thermodynamic, reactivity, and dynamics of water and aqueous systems confined within different types of nanopores, synthetic and biological. Currently, this is a branch of water science that has attracted enormous attention of researchers from different fields interested to extend the understanding of the anomalous properties of bulk water to the nanoscopic domain. From a fundamental perspective, the interactions of water and solutes with a confining surface dramatically modify the liquid's structure and, consequently, both its thermodynamical and dynamical behaviors, breaking the validity of the classical thermodynamic and phenomenological description of the transport properties of aqueous systems. Additionally, man-made nanopores and porous materials have emerged as promising solutions to challenging problems such as water purification, biosensing, nanofluidic logic and gating, and energy storage and conversion, while aquaporin, ion channels, and nuclear pore complex nanopores regulate many biological functions such as the conduction of water, the generation of action potentials, and the storage of genetic material. In this work, the more recent experimental and molecular simulations advances in this exciting and rapidly evolving field will be reported and critically discussed.

3.
Phys Chem Chem Phys ; 23(31): 17018-17025, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34341810

RESUMO

In this work, we revisited the glass transition temperature (Tg) behavior of bulk and confined water-glycerol solutions as a function of the mixture composition and size of the confinement media, with the aim to shed some light on some controversies found in the literature. In the case of bulk mixtures, some discrepancies are observed due to the differences in the way of calculating Tg from the DSC experiments and differences in the protocols of cooling/reheating. However, unphysical behavior observed below the eutectic composition can be due to the crystallization of water during the cooling of the mixture. We also analyzed the effect of confinement on the glass transition of glycerol aqueous solutions, with glycerol mass fraction, wG, between 0.5 and 1.0, in silica mesoporous samples with pore diameters between 2 and 58 nm. Our results show that the the Tg dependence on pore size changes with the mixture composition. For glycerol-rich samples, Tg decreases with a decreasing pore size. This tendency changes with increasing water concentration below wG ∼ 0.6 for samples with dp between 2 and 8 nm, where two glass transition temperatures appear. We hypothesize that this effect is related to the existence of two liquid phases with different densities. The Tg composition dependence in confined glycerol-water mixtures was analyzed with the Gordon-Taylor equation modified for confined mixtures, which allowed us to calculate the Tg of the pure components as a function of the pore size. This analysis shows that for pores with dp > 20 nm, and for pure water and pure glycerol, Tg decreases with the pore size, attaining an almost constant value for samples with pore sizes between 2 and 8 nm. This Tg pore size dependence is explained considering the competition of two opposite effects: a reduction in Tg with a decreasing pore size given when the length scale of dynamics is comparable to the pore size, and an increment in Tg with a decreasing pore size as a result of increasing interactions of the confined liquid with the pore walls.

4.
Phys Chem Chem Phys ; 20(25): 16924-16931, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29774325

RESUMO

There is consensus on the fact that one of the main limitations of Li air batteries (LABs) is the insulating character of Li2O2 and that it becomes crucial to explore new conduction paths. Recent studies indicate that doping with chloride increases the ion conductivity of Li2O2, although to a much lesser extent than expected if chloride is assumed to be a donor dopant [Gerbig et al., Adv. Mater., 2013, 25, 3129]. Subsequently, it has been shown that the addition of lithium chloride, LiCl, to the battery electrolyte increases its discharge capacity, while this effect is not observed with other halogens [Matsuda et al., J. Phys. Chem. C, 2016, 120, 13360]. This fact was attributed to an increase in the conductivity of Cl-doped Li2O2, but still the responsible mechanism is not clear. In this work, we have performed first principle calculations to study the effect of the different halogens (F, Cl, Br, I) as substitutional defects on the electronic and transport properties of Li2O2. We have calculated the formation energies of the different defects and impurities and we analysed how they affect the activation barriers and diffusion coefficients. We have demonstrated that the chloride does not behave like a donor dopant, thus explaining the meager increase of the ionic conductivity experimentally observed, and neither does it promote polaron formation and mobility. We have also found that chloride does not present any special behaviour among the halogen series. Our results reveal that all the studied configurations associated with the halogen defects do not derive metallic states nor extra polarons that would increase considerably the electronic conductivity. This is mainly due to the ionic characteristics of the Li2O2 crystal and the capability of the oxygen dimers to adapt its valence rather than to the nature of the dopant itself.

5.
Phys Chem Chem Phys ; 20(9): 6401-6408, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29442107

RESUMO

A DSC study of dilute glassy LiCl aqueous solutions in the water-dominated regime provides direct evidence of a glass-to-liquid transition in expanded high density amorphous (eHDA)-type solutions. Similarly, low density amorphous ice (LDA) exhibits a glass transition prior to crystallization to ice Ic. Both glass transition temperatures are independent of the salt concentration, whereas the magnitude of the heat capacity increase differs. By contrast to pure water, the glass transition endpoint for LDA can be accessed in LiCl aqueous solutions above 0.01 mole fraction. Furthermore, we also reveal the endpoint for HDA's glass transition, solving the question on the width of both glass transitions. This suggests that both equilibrated HDL and LDL can be accessed in dilute LiCl solutions, supporting the liquid-liquid transition scenario to understand water's anomalies.

6.
Cryobiology ; 69(1): 84-90, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24882608

RESUMO

The concentration and temperature dependence of the viscosity of supercooled polyol (sucrose, trehalose, glucose and glycerol) aqueous solutions was analyzed with the aim of finding simple and accurate correlation equations for the description of this transport property. Three different equations were examined and compared, two empirical equations and an equation derived from the Avramov-Milchev (AM) model. If a description of the viscosity temperature dependence is intended, the AM model gives the best representation of the experimental data with only two adjustable parameters, which have a clear physical meaning. However, if we focus on both, temperature and concentration dependence, the empirical equations are found to be superior to the AM model, except for the glycerol aqueous system. The AM model includes a parameter related to the system fragility, which was obtained for all the aqueous polyol mixtures previously mentioned as a function of concentration, and also for water-trehalose-sodium tetraborate mixtures as a function of the electrolyte content. The results show that the fragility parameter increases with polyol concentration in the series glycerol

Assuntos
Criopreservação/métodos , Crioprotetores/química , Congelamento , Polímeros/química , Temperatura de Transição , Algoritmos , Boratos/química , Temperatura Baixa , Glucose/química , Glicerol/química , Soluções , Sacarose/química , Trealose/química , Viscosidade , Água
7.
Cryobiology ; 65(2): 159-62, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22609516

RESUMO

The viscosity of supercooled glycerol aqueous solutions, with glycerol mass fractions between 0.70 and 0.90, have been determined to confirm that the Avramov-Milchev equation describes very well the temperature dependence of the viscosity of the binary mixtures including the supercooled regime. On the contrary, it is shown that the free volume model of viscosity, with the parameters proposed in a recent work (He, Fowler, Toner, J. Appl. Phys. 100 (2006) 074702), overestimates the viscosity of the glycerol-rich mixtures at low temperatures by several orders of magnitude. Moreover, the free volume model for the water diffusion leads to predictions of the Stokes-Einstein product, which are incompatible with the experimental findings. We conclude that the use of these free volume models, with parameters obtained by fitting experimental data far from the supercooled and glassy regions, lead to incorrect predictions of the deterioration rates of biomolecules, overestimating their life times in these cryopreservation media.


Assuntos
Crioprotetores/química , Glicerol/química , Temperatura Baixa , Criopreservação , Difusão , Modelos Químicos , Soluções , Viscosidade , Água/química
8.
Biointerphases ; 18(6)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916884

RESUMO

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a quasi-non-destructive technique capable of analyzing the outer monolayers of a solid sample and detecting all elements of the periodic table and their isotopes. Its ability to analyze the outer monolayers resides in sputtering the sample surface with a low-dose primary ion gun, which, in turn, imposes the use of a detector capable of counting a single ion at a time. Consequently, the detector saturates when more than one ion arrives at the same time hindering the use of TOF-SIMS for quantification purposes such as isotope ratio estimation. Even though a simple Poisson-based correction is usually implemented in TOF-SIMS acquisition software to compensate the detector saturation effects, this correction is only valid up to a certain extent and can be unnoticed by the inexperienced user. This tutorial describes a methodology based on different practices reported in the literature for dealing with the detector saturation effects and assessing the validity limits of Poisson-based correction when attempting to use TOF-SIMS data for quantification purposes. As a practical example, a dried lithium hydroxide solution was analyzed by TOF-SIMS with the aim of estimating the 6Li/7Li isotope ratio. The approach presented here can be used by new TOF-SIMS users on their own data for understanding the effects of detector saturation, determine the validity limits of Poisson-based correction, and take into account important considerations when treating the data for quantification purposes.


Assuntos
Isótopos , Espectrometria de Massa de Íon Secundário , Lítio
9.
Artigo em Inglês | MEDLINE | ID: mdl-35849482

RESUMO

Phosphoric acid (PA) confined in a commercial mesoporous silica (CARIACT G) with porous size in the range of 3 to 10 nm was studied in relation to its coordination with the silanol groups on the silica surface as a function of temperature, up to 180 °C, using 31P and 29Si MAS NMR spectroscopy. As the temperature increases, the coordination of Si and P in the mesopores depends on the pore size, that is, on the area/volume ratio of the silica matrix. In the mesoporous silica with the higher pore size (10 nm), a considerable fraction of PA is nonbonded to the silanol groups on the surface, and it seems to be responsible for its higher conductivity at temperatures above 120 °C as compared to the samples with a smaller pore size. The electrical conductivity of the functionalized mesoporous silica was higher than that reported for other silico-phosphoric composites synthesized by sol-gel methods using soft templates, which require high-temperature calcination and high-cost reagents and are close to that of the best PA-doped polybenzimidazole membranes used in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). The rate of PA release from the mesoporous silica matrix when the system is exposed to water has been measured, and it was found to be strongly dependent on the pore size. The low cost and simplicity of the PA-functionalized mesoporous silica preparation method makes this material a promising candidate to be used as an electrolyte in HT-PEMFCs.

10.
Phys Chem Chem Phys ; 13(44): 19741-8, 2011 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-21922106

RESUMO

The P(2)O(5)-water system has the widest range of continuously glass-forming compositions known for any glassformer + water binary system. Despite the great range of structures explored by the glasses and liquids in this system, the glass transition temperature (T(g)) itself varies in a simple monotonic fashion. However the values of T(g) reported in the literature show wide disagreement, linked to the different methods of measurement employed. In this work we use differential scanning calorimetry (DSC) to obtain both T(g) itself and the jump in heat capacity that occurs as the metastable equilibrium of the supercooled liquid relieves the non-ergodic glassy state. Our study covers the molar ratio range of H(2)O/P(2)O(5) from 1.5 to 14 (corresponding to the mass fraction of P(2)O(5) between 0.36 and 0.84), which includes the compositions corresponding to pyrophosphoric acid (H(4)P(2)O(7)) and orthophosphoric acid (H(3)PO(4)). The theoretical model of Couchman and Karasz predicts very well the glass transition temperatures of the P(2)O(5)-H(2)O system over the whole composition range if the relatively large heat capacity change associated with water in aqueous solutions at the glass transition temperature is adopted, instead of the vanishingly small value observed for vapor deposited or hyperquenched pure water. Therefore, solvent water in this ambient pressure P(2)O(5)-H(2)O system behaves like a different liquid, more closely resembling a high-density liquid (HDL) polyamorph, as suggested by Mishima for electrolytes at high pressures.

11.
J Chem Phys ; 134(24): 244510, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21721646

RESUMO

In this work we studied the effect of NaCl on the thermodynamic and dynamic properties of supercooled water, for salt concentrations between 0.19 and 1.33 mol kg(-1), using molecular dynamic simulations for TIP5P∕E water model and ion parameters specially designed to be used in combination with this potential. We studied the isobaric heat capacity (C(p)) temperature dependence and observed a maximum in C(p), occurring at T(m), that moves to lower temperature values with increasing salt concentration. Many characteristic changes were observed at scaled temperature T∕T(m) ∼ 0.96, namely a minimum in the density of the system, a reduction of the slope of the number of hydrogen bonds vs. temperature, and a crossover from Vogel-Tamman-Fulcher to Arrhenius dynamics. Finally, at low temperatures we observed that water dynamics become heterogeneous with an apparently common relationship between the fraction of immobile molecules and T/T(m) for all studied systems.


Assuntos
Cloreto de Sódio/química , Água/química , Temperatura Baixa , Simulação de Dinâmica Molecular , Soluções , Termodinâmica
12.
Ultramicroscopy ; 230: 113369, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34399101

RESUMO

The increasing interest in lithium-oxygen batteries (LOB), having the highest theoretical energy densities among the advanced lithium batteries, has triggered the search for in-situ characterization techniques, including Electrochemical Atomic Force Microscopy (EC-AFM). In this work we addressed the characterization of the formation and decomposition of lithium peroxide (Li2O2) on a carbon cathode using a modified AFM technique, called Flow Electrochemical Atomic Force Microscopy (FE-AFM), where an oxygen-saturated solution of the non-aqueous lithium electrolyte is circulated through a liquid AFM cell. This novel technique does not require keeping the AFM equipment inside a glove-box, and it allows performing a number of experiments using the same substrate with different electrolytes without disassembling the cell. We study the morphology of Li2O2 on graphite carbon using lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in dimethyl sulphoxide (DMSO) as electrolyte under different operational conditions, in order to compare our results with those reported using other electrolytes and in-situ and ex-situ EC-AFM.

13.
ACS Nano ; 15(7): 11564-11572, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34255484

RESUMO

The increasing interest in developing safe and sustainable energy storage systems has led to the rapid rise in attention to superconcentrated electrolytes, commonly called water-in-salt (WiS). Several works indicate that the transport properties of these liquid electrolytes are related to the presence of nanodomains, but a detailed characterization of such structure is missing. Here, the structural nano-heterogeneity of lithium WiS electrolytes, comprising lithium trifluoromethanesulfonate (LiTf) and bis(trifluoromethanesulfonyl)imide (LiTFSI) solutions as a function of concentration and temperature, was assessed by resorting to the analysis of small-angle neutron scattering (SANS) patterns. Variations with the concentration of a correlation peak, rather temperature-independent, in a Q range around 3.5-5 nm-1 indicate that these electrolytes are composed of nanometric water-rich channels percolating a 3D dispersing anion-rich network, with differences between Tf and TFSI anions related to their distinct volumes and interactions. Furthermore, a common trend was found for both systems' morphology above a salt volume fraction of ∼0.5. These results imply that the determining factor in the formation of the nanostructure is the salt volume fraction (related to the anion size), rather than its molality. These findings may represent a paradigm shift for designing WiS electrolytes.

14.
J Chem Phys ; 133(2): 024506, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20632762

RESUMO

The properties of water clusters (H(2)O)(n) over a broad range of sizes (n=4-100) were studied by microcanonical parallel tempering Monte Carlo and replica exchange molecular dynamics simulations at temperatures between 20 and 300 K, with special emphasis in the understanding of relation between the structural transitions and dipole behavior. The effect of the water interaction potential was analyzed using six nonpolarizable models, but more extensive calculations were performed using the TIP4P-ice water model. We find that, in general, the dipole moment of the cluster increases significantly as the cluster melts, suggesting that it could be used to discriminate between the solidlike and liquidlike phases. The effect of a moderate electric field on the cluster heat capacity and total dipole moment was found to be negligible.


Assuntos
Água/química , Simulação de Dinâmica Molecular , Método de Monte Carlo , Temperatura
15.
RSC Adv ; 10(51): 30631-30639, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516039

RESUMO

Mesoporous carbons (MCs) with different pore sizes were synthesized and evaluated as a catalyst support for fuel cells. The MCs were obtained from resorcinol-formaldehyde precursors, polymerized in the presence of polydiallyldimethylammonium chloride (cationic polyelectrolyte) as a structuring agent and commercial silica (Sipernat® or Aerosil®) as the hard template. The MC obtained with Aerosil® shows a broad pore size distribution with a maximum at 21 nm. On the other hand, the MCs with Sipernat® show a bimodal pore size distribution, with a narrow peak centered at 5 nm and a broad peak with a maximum ca. 30 nm. All MCs present a high specific surface area (800-1000 m2 g-1) and total pore volume ranging from 1.36 to 1.69 cm3 g-1. PtRu nanoparticles were deposited onto the MC support by an impregnation-reduction method with NaBH4 at 80 °C in basic media. The electrochemical characterization reveals improved electrocatalysis towards the methanol oxidation for the catalyst deposited over the carbon with the highest total pore volume. This catalyst also presented the highest CO2 conversion efficiency, ca. 80%, for the methanol oxidation as determined by differential electrochemical mass spectroscopy analysis. Moreover, the catalyst as a fuel cell anode showed the best performance, reaching a power density of 125 mW cm-2 at 90 °C with methanol as fuel and dry O2.

16.
Rev Sci Instrum ; 91(2): 023704, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113454

RESUMO

The present work describes the development of an environmental chamber (EC), with temperature and humidity control, for measuring ice growth kinetics over a substrate with an atomic force microscope (AFM). The main component of the EC is an AFM fluid glass cell. The relative humidity (RH) inside the EC is set by the flow of a controlled ratio of dry and humid nitrogen gases. The sample temperature is fixed with an AFM commercial accessory, while the temperature of the nitrogen gas inside the EC is controlled by circulating cold nitrogen vapor through a copper cooler, specially designed for this purpose. With this setup, we could study the growth rate of ice crystallization over a mica substrate by measuring the force exerted between the tip and the sample when they approach each other as a function of time. This experimental development represents a significant improvement with respect to previous experimental determinations of ice growth rates, where RH and temperature of the air above the sample were determined far away from the ice crystallization regions, in opposition to the present work.

17.
J Phys Chem B ; 113(16): 5500-7, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19326883

RESUMO

The electrical conductivity of CsCl, KCl, Bu(4)NBr, and Bu(4)NI was studied in stable and supercooled (metastable) sucrose and trehalose aqueous solutions over a wide viscosity range. The results indicate that large positive deviations from the Walden rule occur in these systems due to the higher tendency of the ions to move in water-rich regions, as previously observed for NaCl and MgCl(2). The electrical molar conductivity viscosity dependence can be described with a fractional Walden rule (Lambdaeta(alpha) = constant), where alpha is a decoupling parameter which increases with ionic size and varies between 0.61 and 0.74 for all of the studied electrolytes. Using the electrical molar conductivity dependence of ion-ion interactions, an effective dielectric constant was calculated for a trehalose 39 wt% aqueous solution as a function of temperature. Above 278 K, the effective and the bulk solution dielectric constants are similar, but at lower temperatures, where the carbohydrate becomes less mobile than water, the effective dielectric constant approaches the dielectric constant of water. We also conclude that the solute-solvent dielectric friction contribution can be neglected, reinforcing the idea that the observed breakdown of the Walden rule is due to the existence of local microheterogeneities. The Walden plots for the studied ionic solutes show a decoupling similar to that found for the diffusion of water in the same solutions.


Assuntos
Césio/química , Cloretos/química , Temperatura Baixa , Dissacarídeos/química , Cloreto de Potássio/química , Compostos de Amônio Quaternário/química , Condutividade Elétrica , Eletrólitos/química , Soluções , Viscosidade , Água/química
18.
J Phys Chem B ; 112(41): 12899-906, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18811196

RESUMO

The diffusional mobility of disodium fluorescein has been measured in supercooled aqueous solutions of trehalose, a widely used cryoprotectant disaccharide. The results were analyzed on the basis of the classical continuum hydrodynamic theory (Stokes-Einstein relationship) and compared with results for the diffusion and electrical conductivity of other ionic and nonionic solutes in trehalose and sucrose aqueous solutions. Disodium fluorescein obeys the classical model over a restricted range of inverse reduced temperatures, T g/ T, scaled by the glass transition temperature. Decoupling in neutral solutes takes place at higher values of T g/ T, while in ionic solutes it occurs all over the range of T g/ T studied, as observed for the water mobility in supercooled sugar solutions.


Assuntos
Temperatura Baixa , Transição de Fase , Trealose/química , Água/química , Crioprotetores , Difusão , Soluções , Viscosidade
19.
Biomacromolecules ; 9(2): 741-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18189362

RESUMO

Structure/function relationships of different biopolymers (alginate, dextran, or beta-cyclodextrin) were analyzed as single excipients or combined with trehalose in relation to their efficiency as enzyme stabilizers in freeze-dried formulations and compared to trehalose. Particularly, a novel synthesized polymer beta-cyclodextrin-branched alginate (beta-CD-A) was employed as excipient. During freeze-drying, the polymers or their mixtures did not confer better protection to invertase compared to trehalose. Beta-CD-A (with or without trehalose), beta-cyclodextrin (beta-CD), or dextran with trehalose were the best protective agents during thermal treatment, while beta-CD and alginate showed a negative effect on invertase activity preservation. The beta-CD linked alginate combined the physical stability provided by alginate with the stabilization of hydrophobic regions of the enzyme provided by cyclodextrin. Beta-CD-A was effective even at conditions at which trehalose lost its protective effect. A relatively simple covalent combination of two biopolymers significantly affected their functionalities and, consequently, their interactions with proteins, modifying enzyme stability patterns.


Assuntos
Dessecação/métodos , Polímeros/química , beta-Frutofuranosidase/química , Estabilidade de Medicamentos , Estabilidade Enzimática , Liofilização/métodos , Laminaria/isolamento & purificação , Polímeros/análise , Relação Estrutura-Atividade , beta-Frutofuranosidase/análise
20.
Carbohydr Res ; 343(15): 2650-6, 2008 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-18752795

RESUMO

The dielectric relaxation spectra of concentrated aqueous solutions of sucrose-borate mixtures have been measured in the supercooled and glassy regions in the frequency range of 40Hz to 2MHz. The secondary (beta) relaxation process was analyzed in the temperature range 183-233K at water contents between 20 and 30wt%. The relaxation times were obtained, and the activation energy of that process was calculated. In order to assess the effect of borate on the relaxation of disaccharide-water mixtures, we also studied the dielectric behavior of sucrose aqueous solutions in the same range of temperatures and water contents. Our findings support the view that, beyond a water content of approximately 20wt%, the secondary relaxation of water-sucrose and water-sucrose-borate mixtures adopts a universal character that can be explained in terms of a simple exponential function of the temperature scaled by the glass transition temperature (T(g)). The behavior observed for water-sucrose and water-sucrose-borate mixtures is compared with previous results obtained in other water-carbohydrate systems.


Assuntos
Boratos/química , Sacarose/química , Água/química , Calibragem , Carboidratos/química , Química/métodos , Eletroquímica/métodos , Desenho de Equipamento , Soluções Farmacêuticas/química , Soluções , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA