Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(22): e109711, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-35929179

RESUMO

Several kinds of stress promote the formation of three-stranded RNA:DNA hybrids called R-loops. Insufficient clearance of these structures promotes genomic instability and DNA damage, which ultimately contribute to the establishment of cancer phenotypes. Paraspeckle assemblies participate in R-loop resolution and preserve genome stability, however, the main determinants of this mechanism are still unknown. This study finds that in Multiple Myeloma (MM), AATF/Che-1 (Che-1), an RNA-binding protein fundamental to transcription regulation, interacts with paraspeckles via the lncRNA NEAT1_2 (NEAT1) and directly localizes on R-loops. We systematically show that depletion of Che-1 produces a marked accumulation of RNA:DNA hybrids. We provide evidence that such failure to resolve R-loops causes sustained activation of a systemic inflammatory response characterized by an interferon (IFN) gene expression signature. Furthermore, elevated levels of R-loops and of mRNA for paraspeckle genes in patient cells are linearly correlated with Multiple Myeloma progression. Moreover, increased interferon gene expression signature in patients is associated with markedly poor prognosis. Taken together, our study indicates that Che-1/NEAT1 cooperation prevents excessive inflammatory signaling in Multiple Myeloma by facilitating the clearance of R-loops. Further studies on different cancer types are needed to test if this mechanism is ubiquitously conserved and fundamental for cell homeostasis.


Assuntos
Mieloma Múltiplo , RNA Longo não Codificante , Humanos , Estruturas R-Loop , Mieloma Múltiplo/genética , Paraspeckles , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Interferons/genética , Proteínas Repressoras/metabolismo , Proteínas Reguladoras de Apoptose/genética
2.
Cell Mol Life Sci ; 81(1): 276, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38909325

RESUMO

N6-methyladenosine (m6A) is one of the most prevalent and conserved RNA modifications. It controls several biological processes, including the biogenesis and function of circular RNAs (circRNAs), which are a class of covalently closed-single stranded RNAs. Several studies have revealed that proteotoxic stress response induction could be a relevant anticancer therapy in Acute Myeloid Leukemia (AML). Furthermore, a strong molecular interaction between the m6A mRNA modification factors and the suppression of the proteotoxic stress response has emerged. Since the proteasome inhibition leading to the imbalance in protein homeostasis is strictly linked to the stress response induction, we investigated the role of Bortezomib (Btz) on m6A regulation and in particular its impact on the modulation of m6A-modified circRNAs expression. Here, we show that treating AML cells with Btz downregulated the expression of the m6A regulator WTAP at translational level, mainly because of increased oxidative stress. Indeed, Btz treatment promoted oxidative stress, with ROS generation and HMOX-1 activation and administration of the reducing agent N-acetylcysteine restored WTAP expression. Additionally, we identified m6A-modified circRNAs modulated by Btz treatment, including circHIPK3, which is implicated in protein folding and oxidative stress regulation. These results highlight the intricate molecular networks involved in oxidative and ER stress induction in AML cells following proteotoxic stress response, laying the groundwork for future therapeutic strategies targeting these pathways.


Assuntos
Adenosina , Leucemia Mieloide Aguda , Estresse Oxidativo , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Bortezomib/farmacologia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Proteínas Serina-Treonina Quinases , Peptídeos e Proteínas de Sinalização Intracelular
3.
J Exp Clin Cancer Res ; 43(1): 179, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38926853

RESUMO

BACKGROUND: Enhancer reprogramming plays a significant role in the heterogeneity of cancer. However, we have limited knowledge about the impact of chromatin remodeling in B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) patients, and how it affects tumorigenesis and drug response. Our research focuses on investigating the role of enhancers in sustaining oncogenic transformation in children with BCP-ALL. METHODS: We used ATAC-seq to study the accessibility of chromatin in pediatric BCP-ALL at three different stages-onset, remission, and relapse. Using a combination of computational and experimental methods, we were able to analyze the accessibility landscape and focus on the most significant cis-regulatory sites. These sites were then functionally validated through the use of Promoter capture Hi-C in a primary cell line model called LAL-B, followed by RNA-seq and genomic deletion of target sites using CRISPR-Cas9 editing. RESULTS: We found that enhancer activity changes during cancer progression and is mediated by the production of enhancer RNAs (eRNAs). CRISPR-Cas9-mediated validation of previously unknown eRNA productive enhancers demonstrated their capability to control the oncogenic activities of the MYB and DCTD genes. CONCLUSIONS: Our findings directly support the notion that productive enhancer engagement is a crucial determinant of the BCP-ALL and highlight the potential of enhancers as therapeutic targets in pediatric BCP-ALL.


Assuntos
Transformação Celular Neoplásica , Progressão da Doença , Elementos Facilitadores Genéticos , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Criança
4.
J Thorac Oncol ; 17(6): 751-757, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35351670

RESUMO

Mutations in the KEAP1-NRF2 pathway are common in NSCLC, albeit with a prevalence of KEAP1 mutations in lung adenocarcinoma and an equal representation of KEAP1 and NFE2L2 (the gene encoding for NRF2) alterations in lung squamous cell carcinoma. The KEAP1-NRF2 axis is a crucial modulator of cellular homeostasis, enabling cells to tolerate oxidative and metabolic stresses, and xenobiotics. The complex cytoprotective response orchestrated by NRF2-mediated gene transcription embraces detoxification mechanisms, ferroptosis protection, and metabolic reprogramming. Given that the KEAP1-NRF2 pathway controls core cellular functions, it is not surprising that a number of clinical studies connected KEAP1 mutations to increased resistance to chemotherapy, radiotherapy, and targeted agents. More recently, an immune-cold tumor microenvironment was described as a typical feature of KEAP1-mutant lung adenocarcinoma. Consistently, a reduced efficacy of immunotherapy was reported in the KEAP1-mutant background. Nevertheless, the connection between KEAP1 and immune resistance seems more complex and dependent on coexisting genomic alterations. Given the clinical implications of deregulated KEAP1-NRF2 pathway in lung cancer, the development of pathway-directed anticancer treatments should be considered a priority in the domain of thoracic oncology.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/patologia , Mutação , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA