Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Mol Ecol ; 29(14): 2639-2660, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31960565

RESUMO

Domestication provides an excellent framework for studying adaptive divergence. Using population genomics and phenotypic assays, we reconstructed the domestication history of the blue cheese mould Penicillium roqueforti. We showed that this fungus was domesticated twice independently. The population used in Roquefort originated from an old domestication event associated with weak bottlenecks and exhibited traits beneficial for pre-industrial cheese production (slower growth in cheese and greater spore production on bread, the traditional multiplication medium). The other cheese population originated more recently from the selection of a single clonal lineage, was associated with all types of blue cheese worldwide except Roquefort, and displayed phenotypes more suited for industrial cheese production (high lipolytic activity, efficient cheese cavity colonization ability and salt tolerance). We detected genomic regions affected by recent positive selection and putative horizontal gene transfers. This study sheds light on the processes of rapid adaptation and raises questions about genetic resource conservation.


Assuntos
Queijo/microbiologia , Microbiologia de Alimentos , Penicillium/genética , Domesticação , Transferência Genética Horizontal , Genoma Fúngico , Fenótipo
2.
BMC Genomics ; 20(1): 330, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046679

RESUMO

BACKGROUND: Oenococcus oeni is a lactic acid bacteria species adapted to the low pH, ethanol-rich environments of wine and cider fermentation, where it performs the crucial role of malolactic fermentation. It has a small genome and has lost the mutS-mutL DNA mismatch repair genes, making it a hypermutable and highly specialized species. Two main lineages of strains, named groups A and B, have been described to date, as well as other subgroups correlated to different types of wines or regions. A third group "C" has also been hypothesized based on sequence analysis, but it remains controversial. In this study we have elucidated the species population structure by sequencing 14 genomes of new strains isolated from cider and kombucha and performing comparative genomics analyses. RESULTS: Sequence-based phylogenetic trees confirmed a population structure of 4 clades: The previously identified A and B, a third group "C" consisting of the new cider strains and a small subgroup of wine strains previously attributed to group B, and a fourth group "D" exclusively represented by kombucha strains. A pair of complete genomes from group C and D were compared to the circularized O. oeni PSU-1 strain reference genome and no genomic rearrangements were found. Phylogenetic trees, K-means clustering and pangenome gene clusters evidenced the existence of smaller, specialized subgroups of strains. Using the pangenome, genomic differences in stress resistance and biosynthetic pathways were found to uniquely distinguish the C and D clades. CONCLUSIONS: The obtained results, including the additional cider and kombucha strains, firmly established the O. oeni population structure. Group C does not appear as fully domesticated as group A to wine, but showed several unique patterns which may be due to ongoing specialization to the cider environment. Group D was shown to be the most divergent member of O. oeni to date, appearing as the closest to a pre-domestication state of the species.


Assuntos
Biodiversidade , Genoma Bacteriano , Chá de Kombucha , Malus/química , Oenococcus/classificação , Oenococcus/genética , Vinho , Filogenia , Sequenciamento Completo do Genoma
3.
Food Microbiol ; 82: 551-559, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31027818

RESUMO

Moldy food products that are not subject to pathogenic bacterial contamination could be trimmed by consumers to remove fungal mycelium before consumption. However, prior to giving such recommendations to consumers, it is necessary to evaluate potential mycotoxin migration in these products. This study aimed at quantifying citrinin (CIT) and ochratoxin A (OTA) accumulation and migration in a French semi-hard Comté cheese after artificial inoculation with a CIT- and OTA-producing Penicillium verrucosum strain. At 8 °C, CIT and OTA production started after 14 days and 28 days incubation, respectively; while at 20 °C, both mycotoxins were produced from day 7. At 20 °C, maximum CIT concentration, about 50000 ng/g, was 20 fold that at 8 °C. Regardless of temperature, maximum OTA concentration was about 4000 ng/g cheese. Maximum concentrations were obtained in the upper part of the cheese, but depending on incubation time, mycotoxins were detected up to 1.6 cm in depth. As long as only white mycelium developed on the cheese surface, trimming can be acceptable, but a blue mold color (due to fungal sporulation) was associated with the accumulation of significant amounts of mycotoxins so the product should be discarded.


Assuntos
Queijo/microbiologia , Citrinina/biossíntese , Microbiologia de Alimentos , Ocratoxinas/biossíntese , Penicillium/metabolismo , Queijo/análise , Citrinina/análise , Inocuidade dos Alimentos , França , Micotoxinas/análise , Micotoxinas/biossíntese , Ocratoxinas/análise , Penicillium/crescimento & desenvolvimento , Penicillium/isolamento & purificação , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/isolamento & purificação , Esporos Fúngicos/metabolismo , Temperatura
4.
Appl Microbiol Biotechnol ; 101(5): 2043-2056, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27921136

RESUMO

PR toxin is a well-known isoprenoid mycotoxin almost solely produced by Penicillium roqueforti after growth on food or animal feed. This mycotoxin has been described as the most toxic produced by this species. In this study, an in silico analysis allowed identifying for the first time a 22.4-kb biosynthetic gene cluster involved in PR toxin biosynthesis in P. roqueforti. The pathway contains 11 open reading frames encoding for ten putative proteins including the major fungal terpene cyclase, aristolochene synthase, involved in the first farnesyl-diphosphate cyclization step as well as an oxidoreductase, an oxidase, two P450 monooxygenases, a transferase, and two dehydrogenase enzymes. Gene silencing was used to study three genes (ORF5, ORF6, and ORF8 encoding for an acetyltransferase and two P450 monooxygenases, respectively) and resulted in 20 to 40% PR toxin production reductions in all transformants proving the involvement of these genes and the corresponding enzyme activities in PR toxin biosynthesis. According to the considered silenced gene target, eremofortin A and B productions were also affected suggesting their involvement as biosynthetic intermediates in this pathway. A PR toxin biosynthesis pathway is proposed based on the most recent and available data.


Assuntos
Vias Biossintéticas/genética , Família Multigênica/genética , Micotoxinas/genética , Micotoxinas/metabolismo , Naftóis/metabolismo , Penicillium/genética , Penicillium/patogenicidade , Acetiltransferases/genética , Inativação Gênica , Oxigenases de Função Mista/genética , Fases de Leitura Aberta/genética , Sesquiterpenos Policíclicos , Sesquiterpenos/metabolismo
5.
Food Microbiol ; 62: 239-250, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27889155

RESUMO

Mycophenolic acid (MPA) is a secondary metabolite produced by various Penicillium species including Penicillium roqueforti. The MPA biosynthetic pathway was recently described in Penicillium brevicompactum. In this study, an in silico analysis of the P. roqueforti FM164 genome sequence localized a 23.5-kb putative MPA gene cluster. The cluster contains seven genes putatively coding seven proteins (MpaA, MpaB, MpaC, MpaDE, MpaF, MpaG, MpaH) and is highly similar (i.e. gene synteny, sequence homology) to the P. brevicompactum cluster. To confirm the involvement of this gene cluster in MPA biosynthesis, gene silencing using RNA interference targeting mpaC, encoding a putative polyketide synthase, was performed in a high MPA-producing P. roqueforti strain (F43-1). In the obtained transformants, decreased MPA production (measured by LC-Q-TOF/MS) was correlated to reduced mpaC gene expression by Q-RT-PCR. In parallel, mycotoxin quantification on multiple P. roqueforti strains suggested strain-dependent MPA-production. Thus, the entire MPA cluster was sequenced for P. roqueforti strains with contrasted MPA production and a 174bp deletion in mpaC was observed in low MPA-producers. PCRs directed towards the deleted region among 55 strains showed an excellent correlation with MPA quantification. Our results indicated the clear involvement of mpaC gene as well as surrounding cluster in P. roqueforti MPA biosynthesis.


Assuntos
Genes Fúngicos , Ácido Micofenólico/metabolismo , Penicillium/genética , Penicillium/metabolismo , Queijo/microbiologia , Simulação por Computador , Expressão Gênica , Inativação Gênica , Genoma Fúngico , Família Multigênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Reação em Cadeia da Polimerase , Biossíntese de Proteínas
6.
FEMS Yeast Res ; 16(2): fow002, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26772797

RESUMO

Considered as a sister species of Saccharomyces cerevisiae, S. uvarum is, to a lesser extent, an interesting species for fundamental and applied research studies. Despite its potential interest as a new gene pool for fermenting agents, the intraspecific molecular genetic diversity of this species is still poorly investigated. In this study, we report the use of nine microsatellite markers to describe S. uvarum genetic diversity and population structure among 108 isolates from various geographical and substrate origins (wine, cider and natural sources). Our combined microsatellite markers set allowed differentiating 89 genotypes. In contrast to S. cerevisiae genetic diversity, wild and human origin isolates were intertwined. A total of 75% of strains were proven to be homozygotes and estimated heterozygosity suggests a selfing rate above 0.95 for the different population tested here. From this point of view, the S. uvarum life cycle appears to be more closely related to S. paradoxus or S. cerevisiae of natural resources than S. cerevisiae wine isolates. Population structure could not be correlated to distinct geographic or technological origins, suggesting lower differentiation that may result from a large exchange between human and natural populations mediated by insects or human activities.


Assuntos
Variação Genética , Repetições de Microssatélites , Saccharomyces/classificação , Saccharomyces/genética , Microbiologia de Alimentos , Plantas/microbiologia
7.
Int J Syst Evol Microbiol ; 66(9): 3600-3606, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27306608

RESUMO

Two yeast strains that are members of the same species were isolated from different marine habitats, i.e. one from Mid-Atlantic Ridge ocean water samples located in the direct vicinity of black smokers near the Rainbow deep-sea hydrothermal vent and one from Brazilian marine water samples off the Ipanema beach. Strains CLIB 1964T and CLIB 1965 are anamorphic ascomycetous yeasts affiliated to the Yamadazyma clade of Saccharomycetales. Interestingly, these strains were phylogenetically and distinctly positioned into a group of species comprising all species of the genus Yamadazyma isolated from marine habitats including deep-sea hydrothermal vents, i.e.Candida atmosphaerica,C. spencermartinsiae,C. atlantica,C. oceani and C. taylorii. These strains differed significantly in their D1/D2 domain sequences of the LSU rRNA gene from the closely related species mentioned above, by 2.6, 3.0, 3.4, 3.8 and 6.0 %, respectively. Internal transcribed spacer region sequence divergence was also significant and corresponded to 4.6, 4.7, 4.7, 12.0 and 24.7 % with C. atlantica,C. atmosphaerica, C. spencermartinsiae,C. oceani and C. taylorii, respectively. Phenotypically, strains CLIB 1964T and CLIB 1965 could be distinguished from closely related species by their inability to assimilate l-sorbose. CLIB 1964T (=CBS 14301T=UBOCC-A-214001T) is the designated type strain for Yamadazyma barbieri sp. nov. The MycoBank number is MB 815884.


Assuntos
Fontes Hidrotermais/microbiologia , Filogenia , Saccharomycetales/classificação , Oceano Atlântico , Brasil , DNA Fúngico/genética , Técnicas de Tipagem Micológica , RNA Ribossômico/genética , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNA
8.
Int J Syst Evol Microbiol ; 64(Pt 6): 2169-2175, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24682703

RESUMO

Three yeast strains related to members of the genus Saccharomycopsis were isolated. One strain (CLIB 1310) was isolated from olive brines of fermented black olives in France and two strains (CLIB 1454 and CLIB 1455) were isolated from a plant in French Guiana. Sequence analyses based on the D1/D2 domains of the nuclear large subunit rRNA gene, small-subunit rRNA gene and partial EF-1α gene revealed that the strains represented two novel taxa exhibiting extensive sequence divergence from the previously described species of the genus Saccharomycopsis. Two novel species are described to accommodate these newly isolated strains: Saccharomycopsis olivae sp. nov. (type strain CLIB 1310(T) = CBS 12701(T)) and Saccharomycopsis guyanensis sp. nov. (type strain CLIB 1455(T) = CBS 12914(T) and strain CLIB 1454). Both strains CLIB 1454 and CLIB 1455(T) displayed identical sequences but differed in their ability to metabolize sorbitol and in their morphology on agar medium. Candida amapae, Candida lassensensis and Arthroascus babjevae belonging to the Saccharomycopsis clade, are reassigned to Saccharomycopsis as novel combinations.


Assuntos
Olea/microbiologia , Filogenia , Saccharomycopsis/classificação , Animais , DNA Fúngico/genética , Fermentação , França , Guiana Francesa , Gastrópodes/genética , Dados de Sequência Molecular , Técnicas de Tipagem Micológica , Fator 1 de Elongação de Peptídeos/genética , RNA Ribossômico/genética , Saccharomycopsis/genética , Saccharomycopsis/isolamento & purificação , Sais , Análise de Sequência de DNA
9.
Compr Rev Food Sci Food Saf ; 13(4): 437-456, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33412699

RESUMO

Important fungi growing on cheese include Penicillium, Aspergillus, Cladosporium, Geotrichum, Mucor, and Trichoderma. For some cheeses, such as Camembert, Roquefort, molds are intentionally added. However, some contaminating or technological fungal species have the potential to produce undesirable metabolites such as mycotoxins. The most hazardous mycotoxins found in cheese, ochratoxin A and aflatoxin M1, are produced by unwanted fungal species either via direct cheese contamination or indirect milk contamination (animal feed contamination), respectively. To date, no human food poisoning cases have been associated with contaminated cheese consumption. However, although some studies state that cheese is an unfavorable matrix for mycotoxin production; these metabolites are actually detected in cheeses at various concentrations. In this context, questions can be raised concerning mycotoxin production in cheese, the biotic and abiotic factors influencing their production, mycotoxin relative toxicity as well as the methods used for detection and quantification. This review emphasizes future challenges that need to be addressed by the scientific community, fungal culture manufacturers, and artisanal and industrial cheese producers.

10.
Environ Toxicol Pharmacol ; 109: 104489, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844151

RESUMO

Among cereal contaminants, mycotoxins are of concern due to their importance in terms of food and feed safety. The difficulty in establishing a diagnosis for mycotoxicosis relies on the fact that the effects are most often subclinical for chronic exposure and the most common scenario is multi-contamination by various toxins. Mycotoxin co-occurrence is a major food safety concern as additive or even synergic toxic impacts may occur, but also regarding current regulations as they mainly concern individual mycotoxin levels in specific foods and feed in the food chain. However, due to the large number of possible mycotoxin combinations, there is still limited knowledge on co-exposure toxicity data, which depends on several parameters. In this context, this systematic review aims to provide an overview of the toxic effects of two regulated mycotoxins, namely ochratoxin A and fumonisin B1. This review focused on the 2012-2022 period and analysed the occurrence in Europe of the selected mycotoxins in different food matrices (cereals and cereal-derived products), and their toxic impact, alone or in combination, on in vitro intestinal and hepatic human cells. To better understand and evaluate the associated risks, further research is needed using new approach methodologies (NAM), such as in vitro 3D models. KEY CONTRIBUTION: Cereals and their derived products are the most important food source for humans and feed for animals worldwide. This manuscript is a state of the art review of the literature over the last ten years on ochratoxin A and fumonisin B1 mycotoxins in these products in Europe as well as their toxicological effects, alone and in combination, on human cells. Future perspectives and some challenges regarding the assessment of toxicological effects of mycotoxins are also discussed.


Assuntos
Grão Comestível , Contaminação de Alimentos , Fumonisinas , Ocratoxinas , Ocratoxinas/toxicidade , Ocratoxinas/análise , Fumonisinas/toxicidade , Fumonisinas/análise , Grão Comestível/química , Humanos , Contaminação de Alimentos/análise , Europa (Continente) , Animais
11.
Microorganisms ; 12(9)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39338458

RESUMO

Fusarium Head Blight (FHB), predominantly caused by Fusarium species, is a devastating cereal disease worldwide. While considerable research has focused on Fusarium communities in grains, less attention has been given to residues and soil, the primary inoculum sources. Knowledge of Fusarium spp. diversity, dynamics, and mycotoxin accumulation in these substrates is crucial for assessing their contribution to wheat head infection and the complex interactions among Fusarium communities throughout the wheat cycle. We monitored six minimum-tillage wheat fields, with maize as the preceding crop, over two years. Soils, maize residues, and wheat grains were sampled at four stages. Fusarium composition was analyzed using a culture-dependent method, species-specific qPCR, and EF1α region metabarcoding sequencing, enabling species-level resolution. The Fusarium communities were primarily influenced by substrate type, accounting for 35.8% of variance, followed by sampling location (8.1%) and sampling stage (3.2%). Among the 32 identified species, F. poae and F. graminearum dominated grains, with mean relative abundances of 47% and 29%, respectively. Conversely, residues were mainly contaminated by F. graminearum, with a low presence of F. poae, as confirmed by species-specific qPCR. Notably, during periods of high FHB pressure, such as in 2021, F. graminearum was the dominant species in grains. However, in the following year, F. poae outcompeted F. graminearum, resulting in reduced disease pressure, consistent with the lower pathogenicity of F. poae. Source Tracker analysis indicated that residues were a more significant source of Fusarium contamination on wheat in 2021 compared to 2022, suggesting that F. graminearum in 2021 primarily originated from residues, whereas F. poae's sources of infection need further investigation. Additionally, multiple mycotoxins were detected and quantified in maize residues during the wheat cycle, raising the question of their ecological role and impact on the soil microbiota.

12.
Toxins (Basel) ; 16(1)2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38251270

RESUMO

Mycotoxins, produced by fungi, frequently occur at different stages in the food supply chain between pre- and postharvest. Globally produced cereal crops are known to be highly susceptible to contamination, thus constituting a major public health concern. Among the encountered mycotoxigenic fungi in cereals, Fusarium spp. are the most frequent and produce both regulated (i.e., T-2 toxin, deoxynivalenol -DON-, zearalenone -ZEA-) and emerging (i.e., enniatins -ENNs-, beauvericin -BEA-) mycotoxins. In this study, we investigated the in vitro cytotoxic effects of regulated and emerging fusariotoxins on HepaRG cells in 2D and 3D models using undifferentiated and differentiated cells. We also studied the impact of ENN B1 and ENN B exposure on gene expression of HepaRG spheroids. Gene expression profiling pinpointed the differentially expressed genes (DEGs) and overall similar pathways were involved in responses to mycotoxin exposure. Complement cascades, metabolism, steroid hormones, bile secretion, and cholesterol pathways were all negatively impacted by both ENNs. For cholesterol biosynthesis, 23/27 genes were significantly down-regulated and could be correlated to a 30% reduction in cholesterol levels. Our results show the impact of ENNs on the cholesterol biosynthesis pathway for the first time. This finding suggests a potential negative effect on human health due to the essential role this pathway plays.


Assuntos
Antineoplásicos , Depsipeptídeos , Micotoxinas , Humanos , Micotoxinas/toxicidade , Perfilação da Expressão Gênica , Transcriptoma , Colesterol
13.
Int J Food Microbiol ; 411: 110523, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38134579

RESUMO

Traditional products are particularly appreciated by consumers and among these products, cheese is a major contributor to the Italian mountainous area economics. In this study, shotgun metagenomics and volatilomics were used to understand the biotic and abiotic factors contributing to mountain Caciotta cheese typicity and diversity. Results showed that the origin of cheese played a significant role; however, curd cooking temperature, pH, salt concentration and water activity also had an impact. Viral communities exhibited higher biodiversity and discriminated cheese origins in terms of production farms. Among the most dominant bacteria, Streptococcus thermophilus showed higher intraspecific diversity and closer relationship to production farm when compared to Lactobacillus delbrueckii. However, despite a few cases in which the starter culture was phylogenetically separated from the most dominant strains sequenced in the cheese, starter cultures and dominant cheese strains clustered together suggesting substantial starter colonization in mountain Caciotta cheese. The Caciotta cheese volatilome contained prominent levels of alcohols and ketones, accompanied by lower proportions of terpenes. Volatile profile not only demonstrated a noticeable association with production farm but also significant differences in the relative abundances of enzymes connected to flavor development. Moreover, correlations of different non-homologous isofunctional enzymes highlighted specific contributions to the typical flavor of mountain Caciotta cheese. Overall, this study provides a deeper understanding of the factors shaping typical mountain Caciotta cheese, and the potential of metagenomics for characterizing and potentially authenticating food products.


Assuntos
Queijo , Lactobacillus delbrueckii , Animais , Queijo/microbiologia , Bactérias , Temperatura , Itália , Leite/microbiologia
14.
Food Res Int ; 178: 113975, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309918

RESUMO

Origin authentication methods are pivotal in counteracting frauds and provide evidence for certification systems. For these reasons, geographical origin authentication methods are used to ensure product origin. This study focused on the origin authentication (i.e. at the producer level) of a typical mountain cheese origin using various approaches, including shotgun metagenomics, volatilome, near infrared spectroscopy, stable isotopes, and elemental analyses. DNA-based analysis revealed that viral communities achieved a higher classification accuracy rate (97.4 ± 2.6 %) than bacterial communities (96.1 ± 4.0 %). Non-starter lactic acid bacteria and phages specific to each origin were identified. Volatile organic compounds exhibited potential clusters according to cheese origin, with a classification accuracy rate of 90.0 ± 11.1 %. Near-infrared spectroscopy showed lower discriminative power for cheese authentication, yielding only a 76.0 ± 31.6 % classification accuracy rate. Model performances were influenced by specific regions of the infrared spectrum, possibly associated with fat content, lipid profile and protein characteristics. Furthermore, we analyzed the elemental composition of mountain Caciotta cheese and identified significant differences in elements related to dairy equipment, macronutrients, and rare earth elements among different origins. The combination of elements and isotopes showed a decrease in authentication performance (97.0 ± 3.1 %) compared to the original element models, which were found to achieve the best classification accuracy rate (99.0 ± 0.01 %). Overall, our findings emphasize the potential of multi-omics techniques in cheese origin authentication and highlight the complexity of factors influencing cheese composition and hence typicity.


Assuntos
Queijo , Queijo/análise , Espectroscopia de Luz Próxima ao Infravermelho , Isótopos/análise , Isótopos/química , DNA , Itália
15.
Int J Syst Evol Microbiol ; 63(Pt 8): 3086-3090, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23710049

RESUMO

A yeast strain was isolated from olive brines in a fermented black olive and olive oil manufacturing plant in the town of Nyons (France). On the basis of domains 1 and 2 (D1/D2) large subunit (LSU) rRNA gene and internal transcribed spacer (ITS) region sequence analyses, the strain CLIB 1303(T) was found to be closely related, but clearly distinct, from the three existing species of the genus Citeromyces: Citeromyces matritensis, Citeromyces siamensis and Citeromyces haiwaiiensis. Strain CLIB 1303(T) exhibited 6 bp, 7 bp and 12 bp divergences in the D1/D2 LSU rRNA gene with C. siamensis, C. matritensis and C. hawaiiensis, respectively. ITS region divergence amounted to more than 8 %, 4 % and 4.5 % with C. siamensis, C. matritensis and C. hawaiiensis, respectively, in addition to several indels. Like C. matritensis and C. siamensis strains, strain CLIB 1303(T) was shown to be halotolerant and osmotolerant. Phenotypically, strain CLIB 1303(T) can be distinguished from other species of the genus Citeromyces by its inability to assimilate trehalose. The strain CLIB 1303(T) (= CBS 12700(T)) was assigned to a novel species, Citeromyces nyonsensis sp. nov.


Assuntos
Microbiologia de Alimentos , Olea/microbiologia , Filogenia , Saccharomycetales/classificação , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Fermentação , França , Dados de Sequência Molecular , Técnicas de Tipagem Micológica , RNA Ribossômico/genética , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Sais/análise , Análise de Sequência de DNA
16.
Artigo em Inglês | MEDLINE | ID: mdl-38052450

RESUMO

Interest in fermented foods is increasing because fermented foods are promising solutions for more secure food systems with an increased proportion of minimally processed plant foods and a smaller environmental footprint. These developments also pertain to novel fermented food for which no traditional template exists, raising the question of how to develop starter cultures for such fermentations. This review establishes a framework that integrates traditional and scientific knowledge systems for the selection of suitable cultures. Safety considerations, the use of organisms in traditional food fermentations, and the link of phylogeny to metabolic properties provide criteria for culture selection. Such approaches can also select for microbial strains that have health benefits. A science-based approach to the development of novel fermented foods can substantially advance their value through more secure food systems, food products that provide health-promoting microbes, and the provision of foods that improve human health. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 15 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

17.
Evol Appl ; 16(8): 1438-1457, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37622099

RESUMO

Domestication is an excellent case study for understanding adaptation and multiple fungal lineages have been domesticated for fermenting food products. Studying domestication in fungi has thus both fundamental and applied interest. Genomic studies have revealed the existence of four populations within the blue-cheese-making fungus Penicillium roqueforti. The two cheese populations show footprints of domestication, but the adaptation of the two non-cheese populations to their ecological niches (i.e., silage/spoiled food and lumber/spoiled food) has not been investigated yet. Here, we reveal the existence of a new P. roqueforti population, specific to French Termignon cheeses, produced using small-scale traditional practices, with spontaneous blue mould colonisation. This Termignon population is genetically differentiated from the four previously identified populations, providing a novel source of genetic diversity for cheese making. The Termignon population indeed displayed substantial genetic diversity, both mating types, horizontally transferred regions previously detected in the non-Roquefort population, and intermediate phenotypes between cheese and non-cheese populations. Phenotypically, the non-Roquefort cheese population was the most differentiated, with specific traits beneficial for cheese making, in particular higher tolerance to salt, to acidic pH and to lactic acid. Our results support the view that this clonal population, used for many cheese types in multiple countries, is a domesticated lineage on which humans exerted strong selection. The lumber/spoiled food and silage/spoiled food populations were not more tolerant to crop fungicides but showed faster growth in various carbon sources (e.g., dextrose, pectin, sucrose, xylose and/or lactose), which can be beneficial in their ecological niches. Such contrasted phenotypes between P. roqueforti populations, with beneficial traits for cheese-making in the cheese populations and enhanced ability to metabolise sugars in the lumber/spoiled food population, support the inference of domestication in cheese fungi and more generally of adaptation to anthropized environments.

18.
Food Res Int ; 168: 112691, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120186

RESUMO

Bisifusarium domesticum is among the main molds used during cheese-making for its "anticollanti" property that prevents the sticky smear defect of some cheeses. Previously, numerous cheese rinds were sampled to create a working collection and not only did we isolate B. domesticum but we observed a completely unexpected diversity of "Fusarium-like" fungi belonging to the Nectriaceae family. Four novel cheese-associated species belonging to two genera were described: Bisifusarium allantoides, Bisifusarium penicilloides, Longinectria lagenoides, and Longinectria verticilliformis. In this study, we thus aimed at determining their potential functional impact during cheese-making by evaluating their lipolytic and proteolytic activities as well as their capacity to produce volatile (HS-Trap GC-MS) and non-volatile secondary metabolites (HPLC & LC-Q-TOF). While all isolates were proteolytic and lipolytic, higher activities were observed at 12 °C for several B. domesticum, B. penicilloides and L. lagenoides isolates, which is in agreement with typical cheese ripening conditions. Using volatilomics, we identified multiple cheese-related compounds, especially ketones and alcohols. B. domesticum and B. penicilloides isolates showed higher aromatic potential although compounds of interest were also produced by B. allantoides and L. lagenoides. These species were also lipid producers. Finally, an untargeted extrolite analysis suggested a safety status of these strains as no known mycotoxins were produced and revealed the production of potential novel secondary metabolites. Biopreservation tests performed with B. domesticum suggested that it may be an interesting candidate for biopreservation applications in the cheese industry in the future.


Assuntos
Queijo , Fusarium , Queijo/análise , Álcoois/análise , Cromatografia Gasosa-Espectrometria de Massas
19.
Evol Appl ; 16(9): 1637-1660, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37752962

RESUMO

Some fungi have been domesticated for food production, with genetic differentiation between populations from food and wild environments, and food populations often acquiring beneficial traits through horizontal gene transfers (HGTs). Studying their adaptation to human-made substrates is of fundamental and applied importance for understanding adaptation processes and for further strain improvement. We studied here the population structures and phenotypes of two distantly related Penicillium species used for dry-cured meat production, P. nalgiovense, the most common species in the dry-cured meat food industry, and P. salamii, used locally by farms. Both species displayed low genetic diversity, lacking differentiation between strains isolated from dry-cured meat and those from other environments. Nevertheless, the strains collected from dry-cured meat within each species displayed slower proteolysis and lipolysis than their wild conspecifics, and those of P. nalgiovense were whiter. Phenotypically, the non-dry-cured meat strains were more similar to their sister species than to their conspecific dry-cured meat strains, indicating an evolution of specific phenotypes in dry-cured meat strains. A comparison of available Penicillium genomes from various environments revealed HGTs, particularly between P. nalgiovense and P. salamii (representing almost 1.5 Mb of cumulative length). HGTs additionally involved P. biforme, also found in dry-cured meat products. We further detected positive selection based on amino acid changes. Our findings suggest that selection by humans has shaped the P. salamii and P. nalgiovense populations used for dry-cured meat production, which constitutes domestication. Several genetic and phenotypic changes were similar in P. salamii, P. nalgiovense and P. biforme, indicating convergent adaptation to the same human-made environment. Our findings have implications for fundamental knowledge on adaptation and for the food industry: the discovery of different phenotypes and of two mating types paves the way for strain improvement by conventional breeding, to elucidate the genomic bases of beneficial phenotypes and to generate diversity.

20.
Food Microbiol ; 32(1): 32-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22850371

RESUMO

Malolactic fermentation (MLF) is an important step in cider production in order to allowing for improvement of microbiological stability and organoleptic characteristics of cider. Induction of this fermentation by using starter cultures enables a better control over this bioprocess, but although it is a common practice in winemaking, starters specifically focussed for cider MLF are not yet commercially available. Proper starter cultures need to present the ability to degrade l-malic acid conferring pleasing sensory characteristics while avoiding toxicological risks. In this work, lactic acid bacteria (LAB) were first isolated from MLF industrial cider samples, obtained in a cellar in the main cider-producing region of Spain, Asturias. Isolates, identified by molecular tools, belonged to the Lactobacillus brevis and Oenococcus oeni species. After a phylogenetic analysis, representative strains of both identified species were evaluated in order to determine their fermentation capacity, showing O. oeni the best behaviour in this cider fermentation, as previously demonstrated for wine in the literature. Consequently, and with the aim to test the influence at strain level, selection of O. oeni isolates as starters for cider fermentation has been undergone. In order to check the influence of geography over biodiversity, O. oeni strains from six different industrial cellars representing the distinct producing areas in the region (located in a ratio of 30 km) were analyzed by using a specific RAPD method. In this way, isolates were typed in five distinct groups, mainly corresponding to each producing area. All strains isolated from the same cellar showed the same RAPD profile revealing the significance of geographical origin in the indigenous cider LAB. Molecular tools were applied to reject those isolates exhibiting presence of genes related to organoleptic spoilage (exopolysaccharides and acrolein production) or food safety (biogenic amine production), as key selection criteria. Representative strains of each of the five O. oeni RAPD groups were tested as pure cultures to evaluate their technological utility for cider production. Experimental data of malic acid degradation and cell concentration obtained were fitted to previously selected kinetic models aimed to optimization and prediction of bioprocess performance. Four strains revealed as suitable potential starter cultures for conducting MLF in cider production.


Assuntos
Ácido Láctico/metabolismo , Oenococcus/isolamento & purificação , Oenococcus/metabolismo , Vinho/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fermentação , Levilactobacillus brevis/classificação , Levilactobacillus brevis/genética , Levilactobacillus brevis/isolamento & purificação , Levilactobacillus brevis/metabolismo , Dados de Sequência Molecular , Oenococcus/classificação , Oenococcus/genética , Filogenia , Vinho/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA