Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
J Biol Chem ; 291(8): 3967-81, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26703465

RESUMO

Angiotensin II (Ang II) is a vasopressive hormone but is also a potent activator of cellular migration. We have previously shown that it can promote the activation of the GTPase ARF6 in a heterologous overexpressing system. The molecular mechanisms by which receptors control the activation of this small G protein remain, however, largely unknown. Furthermore, how ARF6 coordinates the activation of complex cellular responses needs to be further elucidated. In this study, we demonstrate that Ang II receptors engage ß-arrestin, but not Gq, to mediate ARF6 activation in HEK 293 cells. To further confirm the key role of ß-arrestin proteins, we overexpressed ß-arrestin2-(1-320), a dominant negative mutant known to block receptor endocytosis. We show that expression of this truncated construct does not support the activation of the GTPase nor cell migration. Interestingly, ß-arrestin2 can interact with the ARF guanine nucleotide exchange factor ARNO, although the C-terminally lacking mutant does not. We finally examined whether receptor endocytosis controlled ARF6 activation and cell migration. Although the clathrin inhibitor PitStop2 did not impact the ability of Ang II to activate ARF6, cell migration was markedly impaired. To further show that ARF activation regulates key signaling events leading to migration, we also examined MAPK activation. We demonstrate that this signaling axis is relevant in smooth muscle cells of the vasculature. Altogether, our findings show for the first time that Ang II receptor signaling to ß-arrestin regulates ARF6 activation. These proteins together control receptor endocytosis and ultimately cell migration.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Angiotensina II/metabolismo , Arrestinas/metabolismo , Movimento Celular/fisiologia , Endocitose/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Angiotensina II/genética , Animais , Arrestinas/genética , Movimento Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Ratos , Ratos Wistar , Receptores de Angiotensina/genética , Receptores de Angiotensina/metabolismo , Sulfonamidas/farmacologia , Tiazolidinas/farmacologia , beta-Arrestinas
3.
Mol Biol Cell ; 18(2): 501-11, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17122362

RESUMO

ARF6 and Rac1 are small GTPases known to regulate remodelling of the actin cytoskeleton. Here, we demonstrate that these monomeric G proteins are sequentially activated when HEK 293 cells expressing the angiotensin type 1 receptor (AT(1)R) are stimulated with angiotensin II (Ang II). After receptor activation, ARF6 and Rac1 transiently form a complex. Their association is, at least in part, direct and dependent on the nature of the nucleotide bound to both small G proteins. ARF6-GTP preferentially interacts with Rac1-GDP. AT(1)R expressing HEK293 cells ruffle, form membrane protrusions, and migrate in response to agonist treatment. ARF6, but not ARF1, depletion using small interfering RNAs recapitulates the ruffling and migratory phenotype observed after Ang II treatment. These results suggest that ARF6 depletion or Ang II treatment are functionally equivalent and point to a role for endogenous ARF6 as an inhibitor of Rac1 activity. Taken together, our findings reveal a novel function of endogenously expressed ARF6 and demonstrate that by interacting with Rac1, this small GTPase is a central regulator of the signaling pathways leading to actin remodeling.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Membrana Celular/fisiologia , Movimento Celular , Receptor Tipo 1 de Angiotensina/agonistas , Proteínas rac1 de Ligação ao GTP/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/antagonistas & inibidores , Fatores de Ribosilação do ADP/genética , Actinas/metabolismo , Angiotensina II/farmacologia , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/química , Células Cultivadas , Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/análise , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Transporte Proteico , Interferência de RNA , Fatores de Troca de Nucleotídeo Guanina Rho , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética
4.
Cell Signal ; 19(11): 2370-8, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17719203

RESUMO

We have previously shown that the ADP-ribosylation factor 6 (ARF6), a small GTP-binding protein, is important for the internalization of several G protein-coupled receptors. Here, we propose to elucidate the molecular steps controlled by ARF6 in the endocytic process of the angiotensin II type 1 receptor (ATR), a model receptor being internalized via the clathrin-coated vesicle pathway. In HEK 293 cells, angiotensin II stimulation leads to the formation of a complex including ARF6, the beta-subunit of AP-2 and the heavy chain of clathrin. In vitro experiments indicate that the interactions between ARF6 and the beta-subunit of AP-2 as well as with the heavy chain of clathrin are direct, and dependent upon the nature of the nucleotide bound to ARF6. beta2-adaptin binds to ARF6-GDP while clathrin preferentially interacts with ARF6 when loaded with GTP. These interactions have an important physiological consequence. Indeed, depletion of ARF6 prevents the agonist-dependent recruitment of beta2-adaptin and clathrin to the activated ATR. Interestingly, in these cells, the plasma membrane redistribution of either beta2-adaptin-GFP or betaarrestin 2-GFP, following Ang II stimulation, is altered. Both proteins are defective in clustering into large punctated structure at the plasma membrane compared to control conditions. Taken together, these results suggest that the cycling of ARF6 between its GDP-and GTP-bound states coordinates the recruitment of AP-2 and clathrin to activated receptors during the endocytic process.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Clatrina/metabolismo , Endocitose , Receptor Tipo 1 de Angiotensina/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/deficiência , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Angiotensina II/farmacologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cadeias Pesadas de Clatrina/metabolismo , Endocitose/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo
5.
Curr Biol ; 23(7): 581-7, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23523246

RESUMO

In metazoans, unequal partitioning of the cell-fate determinant Numb underlies the generation of distinct cell fates following asymmetric cell division [1-5]. In Drosophila, during asymmetric division of the sensory organ precursor (SOP) cell, Numb is unequally inherited by the pIIb daughter cell, where it antagonizes Notch [1, 6-8]. Numb inhibits Notch partly through inhibiting the plasma membrane localization of Sanpodo (Spdo), a transmembrane protein required for Notch signaling during asymmetric cell division [9, 10]. Numb, by binding to Spdo and α-Adaptin, was proposed to mediate Spdo endocytosis alone or bound to Notch in the pIIb cell, thereby preventing Notch activation [11-16]. However, in addition to endocytosis, Numb also controls the postendocytic trafficking and degradation of Notch in mammals [17, 18] and negatively regulates basolateral recycling in C. elegans [19, 20]. Thus, whether Numb promotes the endocytosis of Spdo is a question that requires experimental demonstration and is therefore investigated in this article. Based on internalization assays, we show that Spdo endocytosis is restricted to cells in interphase and requires AP-2 activity. Surprisingly, the bulk endocytosis of Spdo occurs properly in numb mutant SOP, indicating that Numb does not regulate the steady-state localization of Spdo via Spdo internalization. We report that Numb genetically and physically interacts with AP-1, a complex regulating the basolateral recycling of Spdo [21]. In numb mutant organs, Spdo is efficiently internalized and recycled back to the plasma membrane. We propose that Numb acts in concert with AP-1 to control the endocytic recycling of Spdo to regulate binary-fate decisions.


Assuntos
Divisão Celular Assimétrica/fisiologia , Diferenciação Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Endocitose/fisiologia , Hormônios Juvenis/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Membrana Celular/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Imunoprecipitação , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência , Células-Tronco Neurais/fisiologia , Receptores Notch/antagonistas & inibidores , Células Receptoras Sensoriais/fisiologia , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-2/metabolismo
6.
Curr Biol ; 21(1): 87-95, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21194948

RESUMO

In Drosophila melanogaster, external sensory organs develop from a single sensory organ precursor (SOP). The SOP divides asymmetrically to generate daughter cells, whose fates are governed by differential Notch activation. Here we show that the clathrin adaptor AP-1 complex, localized at the trans Golgi network and in recycling endosomes, acts as a negative regulator of Notch signaling. Inactivation of AP-1 causes ligand-dependent activation of Notch, leading to a fate transformation within sensory organs. Loss of AP-1 affects neither cell polarity nor the unequal segregation of the cell fate determinants Numb and Neuralized. Instead, it causes apical accumulation of the Notch activator Sanpodo and stabilization of both Sanpodo and Notch at the interface between SOP daughter cells, where DE-cadherin is localized. Endocytosis-recycling assays reveal that AP-1 acts in recycling endosomes to prevent internalized Spdo from recycling toward adherens junctions. Because AP-1 does not prevent endocytosis and recycling of the Notch ligand Delta, our data indicate that the DE-cadherin junctional domain may act as a launching pad through which endocytosed Notch ligand is trafficked for signaling.


Assuntos
Caderinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Receptores Notch/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Caderinas/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Transporte Proteico/fisiologia , Receptores Notch/genética , Órgãos dos Sentidos/embriologia , Órgãos dos Sentidos/metabolismo , Fator de Transcrição AP-1/genética
7.
Cell Signal ; 21(7): 1045-53, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19249352

RESUMO

Cell migration is a fundamental biological process involved in normal physiology. Altered motile phenotypes are however often associated with the development and progression of diseases such as cancer and atherosclerosis. Remodeling of the actin cytoskeleton is required for cell shape changes and is controlled by a broad variety of cellular proteins. Interestingly, several extracellular stimuli can promote actin reorganization and result in enhanced cell migration. Namely, G protein-coupled receptors (GPCRs), which are activated by factors ranging from small amines, to hormones, and chemokines, initiate signalling cascades resulting in cell shape changes, formation of a migrating front (leading edge) and altered adhesion. GPCRs are heptahelical membrane proteins, which classically transmit signal via the activation of heterotrimeric G proteins. Sustained stimulation leads to the activation of G protein-coupled receptor kinases (GRKs) and the recruitment of arrestin proteins, which engage alternative signalling pathways. In this review, we will discuss the role of GPCR mediated signal transduction and review their importance in the regulation of actin remodeling leading to cell migration.


Assuntos
Movimento Celular , Receptores Acoplados a Proteínas G/metabolismo , Animais , Quinases de Receptores Acoplados a Proteína G/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/genética
8.
J Biol Chem ; 283(52): 36425-34, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18990689

RESUMO

Activation of intracellular signaling pathways by growth factors is one of the major causes of cancer development and progression. Recent studies have demonstrated that monomeric G proteins of the Ras family are key regulators of cell proliferation, migration, and invasion. Using an invasive breast cancer cell lines, we demonstrate that the ADP-ribosylation factor 1 (ARF1), a small GTPase classically associated with the Golgi, is an important regulator of the biological effects induced by epidermal growth factor. Here, we show that this ARF isoform is activated following epidermal growth factor stimulation and that, in MDA-MB-231 cells, ARF1 is found in dynamic plasma membrane ruffles. Inhibition of endogenous ARF1 expression results in the inhibition of breast cancer cell migration and proliferation. The underlying mechanism involves the activation of the phosphatidylinositol 3-kinase pathway. Our data demonstrate that depletion of ARF1 markedly impairs the recruitment of the phosphatidylinositol 3-kinase catalytic subunit (p110alpha) to the plasma membrane, and the association of the regulatory subunit (p85alpha) to the activated receptor. These results uncover a novel molecular mechanism by which ARF1 regulates breast cancer cell growth and invasion during cancer progression.


Assuntos
Fator 1 de Ribosilação do ADP/fisiologia , Neoplasias da Mama/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Catálise , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Classe I de Fosfatidilinositol 3-Quinases , Progressão da Doença , Ativação Enzimática , Complexo de Golgi/metabolismo , Humanos , Microscopia Confocal
9.
J Neurochem ; 88(6): 1398-405, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15009640

RESUMO

Dopamine neurons have been suggested to use glutamate as a cotransmitter. To identify the basis of such a phenotype, we have examined the expression of the three recently identified vesicular glutamate transporters (VGLUT1-3) in postnatal rat dopamine neurons in culture. We found that the majority of isolated dopamine neurons express VGLUT2, but not VGLUT1 or 3. In comparison, serotonin neurons express only VGLUT3. Single-cell RT-PCR experiments confirmed the presence of VGLUT2 mRNA in dopamine neurons. Arguing for phenotypic heterogeneity among axon terminals, we find that only a proportion of terminals established by dopamine neurons are VGLUT2-positive. Taken together, our results provide a basis for the ability of dopamine neurons to release glutamate as a cotransmitter. A detailed analysis of the conditions under which DA neurons gain or loose a glutamatergic phenotype may provide novel insight into pathophysiological processes that underlie diseases such as schizophrenia, Parkinson's disease and drug dependence.


Assuntos
Proteínas de Transporte/biossíntese , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Proteínas de Membrana Transportadoras , Neurônios/metabolismo , Sinapses/metabolismo , Proteínas de Transporte Vesicular , Sistemas de Transporte de Aminoácidos Acídicos/biossíntese , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Proteínas de Transporte/genética , Células Cultivadas , Imuno-Histoquímica , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Neurônios/citologia , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/metabolismo , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serotonina/biossíntese , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/genética , Proteína Vesicular 1 de Transporte de Glutamato , Proteína Vesicular 2 de Transporte de Glutamato , Proteínas Vesiculares de Transporte de Glutamato , Ácido gama-Aminobutírico/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA