Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 608(7921): 80-86, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922501

RESUMO

Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3.


Assuntos
Secas , Clima Extremo , Inundações , Gestão de Riscos , Mudança Climática/estatística & dados numéricos , Conjuntos de Dados como Assunto , Secas/prevenção & controle , Secas/estatística & dados numéricos , Inundações/prevenção & controle , Inundações/estatística & dados numéricos , Humanos , Hidrologia , Internacionalidade , Gestão de Riscos/métodos , Gestão de Riscos/estatística & dados numéricos , Gestão de Riscos/tendências
2.
Sci Rep ; 11(1): 17224, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446771

RESUMO

To improve coastal adaptation and management, it is critical to better understand and predict the characteristics of sea levels. Here, we explore the capabilities of artificial intelligence, from four deep learning methods to predict the surge component of sea-level variability based on local atmospheric conditions. We use an Artificial Neural Networks, Convolutional Neural Network, Long Short-Term Memory layer (LSTM) and a combination of the latter two (ConvLSTM), to construct ensembles of Neural Network (NN) models at 736 tide stations globally. The NN models show similar patterns of performance, with much higher skill in the mid-latitudes. Using our global model settings, the LSTM generally outperforms the other NN models. Furthermore, for 15 stations we assess the influence of adding complexity more predictor variables. This generally improves model performance but leads to substantial increases in computation time. The improvement in performance remains insufficient to fully capture observed dynamics in some regions. For example, in the tropics only modelling surges is insufficient to capture intra-annual sea level variability. While we focus on minimising mean absolute error for the full time series, the NN models presented here could be adapted for use in forecasting extreme sea levels or emergency response.

3.
Sci Total Environ ; 720: 137572, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32146396

RESUMO

Flood risk can be reduced at various stages of the disaster management cycle. Traditionally, permanent infrastructure is used for flood prevention, while residual risk is managed with emergency measures that are triggered by forecasts. Advances in flood forecasting hold promise for a more prominent role to forecast-based measures. In this study, we present a methodology that compares permanent with forecast-based flood-prevention measures. On the basis of this methodology, we demonstrate how operational decision-makers can select between acting against frequent low-impact, and rare high-impact events. Through a hypothetical example, we describe a number of decision scenarios using flood risk indicators for Chikwawa, Malawi, and modelled and forecasted discharge data from 1997 to 2018. The results indicate that the choice between permanent and temporary measures is affected by the cost of measures, climatological flood risk, and forecast ability to produce accurate flood warnings. Temporary measures are likely to be more cost-effective than permanent measures when the probability of flooding is low. Furthermore, a combination of the two types of measures can be the most cost-effective solution, particularly when the forecast is more skillful in capturing low-frequency events. Finally, we show that action against frequent low-impact events could more cost-effective than action against rare high-impact ones. We conclude that forecast-based measures could be used as an alternative to some of the permanent measures rather than being used only to cover the residual risk, and thus, should be taken into consideration when identifying the optimal flood risk strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA