Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 58(8): 5082-5088, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30912933

RESUMO

In order to achieve a significant size reduction to get ultrasmall upconverting nanoparticles (UCNPs) following a thermal coprecipitation pathway, we identified two critical points: the UCNP precursor mixing and high-temperature heating steps. Significant differences could be observed according to the way the inorganic sodium and fluoride sources were mixed to the rare-earth oleate before the high-temperature heating step. More interestingly, accurate monitoring of the high-temperature heating step using microwave (MW) dielectric heating yielded major improvement toward ultrasmall UCNPs. Thus, hexagonal, Tm-doped sub-5-nm UCNPs with an unusual Na(Yb-Gd)F4 matrix with 53% Yb were produced, displaying satisfactory luminescence. Noticeably, MW heating was achieved in a weakly MW-absorbing oleic acid (OA)/octadecene mixture, and the influence of the OA content composition on the MW heating efficiency is discussed in this report.

2.
Beilstein J Org Chem ; 15: 2671-2677, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807202

RESUMO

Upconverting nanoparticles are a rising class of non-linear luminescent probes burgeoning since the beginning of the 2000's, especially for their attractiveness in theranostics. However, the precise quantification of the light delivered remains a hot problem in order to estimate their impact on the biological medium. Sophisticated photophysical measurements under near infrared excitation have been developed only by few teams. Here, we present the first attempt towards a simple and cheap photochemical approach consisting of an actinometric characterization of the green emission of NaYF4:Yb,Er nanoparticles. Using the recently calibrated actinometer 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene operating in the green region of the visible spectra, we propose a simple photochemical experiment to get an accurate estimation of the efficiency of these green-emitting "nanolamps". The agreement of the collected data with the previous published results validates this approach.

3.
Angew Chem Int Ed Engl ; 56(21): 5839-5843, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28417538

RESUMO

A series of oxahelicenes composed of ortho/meta-annulated benzene/pyridine and 2H-pyran rings were synthesized on the basis of the cobalt(I)-mediated (or rhodium(I)- or nickel(0)-mediated) double, triple, or quadruple [2+2+2] cycloisomerization of branched aromatic hexa-, nona-, or dodecaynes, thus allowing the construction of 6, 9, or 12 rings in a single operation. The use of a flow reactor was found to be beneficial for the multicyclization reactions. The stereogenic centers present in some of the oligoynes steered the helical folding in such a way that the final oxa[9]-, [13]-, [17]- and [19]helicenes were obtained in both enantiomerically and diastereomerically pure form. Specifically, the oxa[19]helicenes beat the current record in the length of a helicene backbone. Single-molecule conductivity was studied by the mechanically controllable break-junction method with a pyridooxa[9]helicene.

4.
Phys Chem Chem Phys ; 18(30): 20281-9, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26667964

RESUMO

The self-organization of tri-adamantyl (TAB) benzene molecules has been investigated using low temperature scanning tunneling microscopy (LT-STM). The molecular structures have also been studied using molecular modeling. In particular, these calculations have been performed on large areas (1000 nm(2)) from the atomic structure of the molecular building block, combining molecular dynamics (MD) and Monte-Carlo (MC) approaches. These investigations show that the structure of the molecule and its flexibility allow for the formation of different networks as a function of surface coverage. The calculations demonstrate that the stability of the largest structures is obtained through the increase of the interfacial energy induced by the rotation of the adamantyl groups, a behavior whose consequences explain the subtle contrasts observed in the experimental STM images.

5.
Phys Chem Chem Phys ; 16(41): 22903-12, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25244027

RESUMO

Large molecules made of a central hexa-adamantyl-hexa-benzocoronene plateau surrounded by six adamantyl groups have been investigated by low temperature scanning tunneling microscopy and scanning tunneling spectroscopy coupled with image calculations and molecular mechanics. The structure of large self-assembled domains reveals that the intermolecular interactions between adamantyl peripheral groups dominate film growth. At very low coverage, the molecules can exhibit a certain instability for negative bias voltages which induces a partial rotation. Manipulations of single objects using the STM tip are used to create small clusters of two or three molecules. The formed structures can be obtained and manipulated provided that the flexible adamantyl moieties of neighbouring molecules are brought in close contact promoting a robust mechanical anchoring.

6.
Chemistry ; 19(37): 12435-45, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23881753

RESUMO

A thermally irreversible dithienylethene (DTE) photochrom can be turned into a thermally reversible one in presence of Cu(II) triflate. A ring opening (DTEC closed→DTEO open) occurs through the formation of a copper-containing fast transient intermediate. Stopped-flow experiments monitored at 410 and 780 nm have allowed to show that the stoichiometry of this intermediate is DTE/Cu=1:1. At longer monitoring times (i.e., several seconds after mixing), the intermediate undergoes a slow decay while the residual DTEC closed form opens. A joint detailed kinetic and electrochemical analysis has unveiled a proton catalysis scenario in which electron transfer between DTEC and Cu(II), ligand exchange, protonation-deprotonation equilibria of the cation radicals and ring opening are embedded into two main reaction cycles. At the beginning of the reaction, Cu(II) is reduced into Cu(I) and DTE is degraded without ring opening. Then, as the reaction progresses, the triflic acid released from the Cu(II) reduction switches-on a propagation cycle during which ring opens without any more Cu(II) consumption. Cyclic voltammetry, spectro-electrochemical measurements, delayed photocoloration experiments in presence of Cu(II) and acid-base additions have confirmed the main features of the proton catalysis.

7.
Naunyn Schmiedebergs Arch Pharmacol ; 396(1): 121-137, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255459

RESUMO

Biocompatibility of nanoparticles is the most essential factor in their use in clinical applications. In this study, hyperbranched spermine (HS), hyperbranched spermine-polyethylene glycol-folic acid (HSPF), and hyperbranched spermine-polyethylene glycol-glucose (HSPG) were synthesized for DNA protection and gene delivery to breast cancer cells. The synthesis of HSPG and HSPF was confirmed using proton nuclear magnetic resonance (H-NMR), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) spectroscopy. The HS/DNA, HSPF/DNA, HSPG/DNA, and hyperbranched spermine-polyethylene glycol-folic acid/glucose/DNA (HSPFG/DNA) nanoparticles were prepared by combining different concentrations of HS, HSPF, and HSPG with the same amount of DNA. The ability of HS, HSPF, and HSPG to interact with DNA and protect it against plasm digestion was evaluated using agarose gel. Moreover, in vivo and in vitro biocompatibility of HSPF/DNA, HSPG/DNA, and HSPFG/DNA was investigated using MTT assay and calculating weight change and survival ratio of BALB/c mice, respectively. The results of agarose gel electrophoresis showed that HS, HSPF, and HSPG have the high ability to neutralize the negative charge of DNA and protect it against plasma degradation. The results of in vivo cytotoxicity assay revealed that the HSPF/DNA, HSPG/DNA, and HSPFG/DNA nanoparticles have good biocompatibility on female BALB/c mice. In vitro and in vivo transfection assays revealed that functionalization of the surface of HS using polyethylene glycol-folic acid (HSPF) and polyethylene glycol-glucose (HSPG) significantly increases gene delivery efficiency in vitro and in vivo. These results also showed that gene transfer using both HSPF and HSPG copolymers increases gene transfer efficiency compared to when only one of them is used. The HSPFG/DNA nanoparticles have a high potential for use in therapeutic applications because of their excellent biocompatibility and high gene transfer efficiency to breast cancer tissue.


Assuntos
Técnicas de Transferência de Genes , Nanopartículas , Neoplasias , Animais , Feminino , Camundongos , DNA/química , Ácido Fólico/química , Glucose , Proteoglicanas de Heparan Sulfato , Nanopartículas/química , Polietilenoglicóis/química , Espermina/química
8.
J Colloid Interface Sci ; 649: 900-908, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37390537

RESUMO

HYPOTHESIS: Hybrid polyion complexes (HPICs) obtained from the complexation in aqueous solution of a double hydrophilic block copolymer and metal ions can act as efficient precursors for the controlled synthesis of nanoparticles. In particular, the possibility to control the availability of metal ions by playing on the pH conditions is of special interest to obtain nanoparticles with controlled size and composition. EXPERIMENTS: HPICs based on Fe3+ ions were used to initiate the formation of Prussian blue (PB) nanoparticles in presence of potassium ferrocyanide in reaction media with varying pH values. FINDINGS: Complexed Fe3+ ions within HPICs can be easily released by adjusting the pH value either through the addition of a base/acid or by using a merocyanine photoacid. This allows to modulate the reactivity of Fe3+ ions with potassium ferrocyanide present in solution. As a result, PB nanoparticles with different structures (core, core-shell), composition and controlled size are obtained.

9.
Chemistry ; 18(21): 6568-75, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22492504

RESUMO

The present study quantitatively analyses the gated photochromism and the acidity photomodulation properties of a diacid dithienylethene compound. Photoisomerisation between the open and closed isomers was investigated by UV/visible and (1)H NMR spectroscopy. It was found that the photocyclisation quantum yield of the diacid form was remarkably high (around 90%). Partial neutralisation of the open isomer revealed a gated photochromism as the photocyclisation quantum yield of the mono- and dianion were 50 and 67%, respectively. A considerable photomodulation of the acidity was observed: the closed isomer is more acid than the open one by more than one pK(a) unit. This effect has been shown to be exploitable for a reversible photo-acid generation. This is the first time that a complete quantitative investigation that allows for the determination of the main photochromic, spectral and thermodynamic parameters of a base-sensitive photochromic diarylethene has been carried out.

10.
Phys Chem Chem Phys ; 14(38): 13239-48, 2012 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22914796

RESUMO

A comprehensive kinetic analysis of three prototypical autocatalytic cycle models based on the absolute asymmetric Soai reaction is presented. The three models, which can give rise to amplification of enantiomeric excess and mirror-image symmetry breaking, vary by their monomeric, dimeric or trimeric order of the assumed catalytic species. Our numerical approach considered the entire chiral combinatorics of the diastereomeric interactions in the models as well as the multiplicity of coupled reversible reactions without applying fast equilibration or quasi-steady state approximations. For the simplest monomeric model, an extensive range of parameters was explored employing a random grid parameter scanning method that revealed the influence of the parameter values on the product distribution, the reaction-time, the attenuation or amplification of enantiomeric excess as well as on the presence or absence of mirror-image symmetry breaking. A symmetry breaking test was imposed on the three models showing that an increase in the catalytic oligomer size from one to three leads to a higher tolerance to poorer chiral recognition between the diastereoisomers and identifies the greater impact of the diastereoisomeric energy difference over an imperfect stereoselectivity in the catalytic step. This robustness is understood as a particular case of so-called kinetic proofreading in asymmetric autocatalysis.


Assuntos
Modelos Moleculares , Polímeros/química , Catálise , Cinética , Estereoisomerismo
11.
Nanoscale ; 14(6): 2238-2247, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35080566

RESUMO

We describe here a new methodology for the synthesis of well-defined phosphonic acid-terminated poly(ethylene glycol) (PEG) and RAFT-derived poly(N-vinylpyrrolidone) (PVP) and poly(N-vinylcaprolactam) (PVCL) by amine-thiol-ene and amine-thiol-thiosulfonate conjugation strategies using a phosphonated thiolactone and their use to prepare stable, water-dispersible multifunctional upconverting luminescent nanohybrids.

12.
Sci Total Environ ; 832: 155036, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390366

RESUMO

Plastic pollution has become a significant concern in aquatic ecosystems, where photosynthetic microorganisms such as microalgae represent a major point of entry in the food chain. For this reason an important challenge is to better understand the consequences of plastic pollution on microalgae and the mechanisms underlying the interaction between plastic particles and cell's interfaces. In this study, to answer such questions, we developed an interdisciplinary approach to investigate the role of plastic microparticles in the aggregation of a freshwater microalgae species, Chlorella vulgaris. First, the biophysical characterization, using atomic force microscopy, of the synthetic plastic microparticles used showed that they have in fact similar properties than the ones found in the environment, with a rough, irregular and hydrophobic surface, thereby making them a relevant model. Then a combination of optical imaging and separation experiments showed that the presence of plastic particles in microalgae cultures induced the production of exopolysaccharides (EPS) by the cells, responsible for their aggregation. However, cells that were not cultured with plastic particles could also form aggregates when exposed to the particles after culture. To understand this, advanced single-cell force spectroscopy experiments were performed to probe the interactions between cells and plastic microparticles; the results showed that cells could directly interact with plastic particles through hydrophobic interactions. In conclusion, our experimental approach allowed highlighting the two mechanisms by which plastic microparticles trigger cell aggregation; by direct contact or by inducing the production of EPS by the cells. Because these microalgae aggregates containing plastic are then consumed by bigger animals, these results are important to understand the consequences of plastic pollution on a large scale.


Assuntos
Chlorella vulgaris , Microalgas , Poluentes Químicos da Água , Animais , Ecossistema , Microplásticos , Microscopia de Força Atômica , Plásticos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
13.
ACS Nano ; 16(8): 12107-12117, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35862666

RESUMO

Lanthanide (Ln3+)-doped upconversion nanoparticles (UCNPs) often suffer from weak luminescence, especially when their sizes are ultrasmall (less than 10 nm). Enhancing the upconversion luminescence (UCL) efficiency of ultrasmall UCNPs has remained a challenge that must be undertaken if any practical applications are to be envisaged. Herein, we present a Ln3+-doped oxysulfide@fluoride core/shell heterostructure which shows efficient UCL properties under 980 nm excitation and good stability in solution. Through epitaxial heterogeneous growth, a ∼4 nm optically inert ß-NaYF4 shell was coated onto ∼5 nm ultrasmall Gd2O2S:20%Yb,1%Tm. These Gd2O2S:20%Yb,1%Tm@NaYF4 core/shell UCNPs exhibit a more than 800-fold increase in UCL intensity compared to the unprotected core, a 180-fold increase in luminescence decay time of the 3H4 → 3H6 Tm3+ transition from 5 to 900 µs, and an upconversion quantum yield (UCQY) of 0.76% at an excitation power density of 155 W/cm2. Likewise, Gd2O2S:20%Yb,2%Er@NaYF4 core/shell UCNPs show a nearly 5000-fold increase of their UCL intensity compared to the Gd2O2S:20%Yb,2%Er core and a maximum UCQY of 0.61%. In the Yb/Er core-shell UCNP system, the observed variation of luminescence intensity ratio seems to originate from a change in lattice strain as the temperature is elevated. For nanothermometry applications, the thermal sensitivities based on thermally coupled levels are estimated for both Yb/Tm and Yb/Er doped Gd2O2S@NaYF4 core/shell UCNPs.

14.
Inorg Chem ; 50(16): 7761-8, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21774455

RESUMO

Keggin and Dawson-type polyoxometalates (POMs) decorated by organometallic [cyclometalated ruthenium(II) polypyridine complex] or organic (pyrene) chromophores were prepared by postfunctionalization of hybrid disilylated POM platforms. The connection is made in a very efficient and modular way via Sonogashira coupling reactions, which provide a rigid linkage between the POM and the photoactive centers. Electronic properties have been inferred from electrochemical and photophysical studies and reflect poor electronic interactions between both partners. The presence of the POM leads to luminescence quenching of the chromophores, which was attributed to an intramolecular electron transfer from the chromophore to the POM. The rate of this process is much faster in the POM-pyrene than in the POM-Ru system. It depends on the driving force dictated by the redox potentials of both partners but also in the case of the POM-Ru system on the presence of the metallacycle, which acts as a molecular insulator and delays the intramolecular electron transfer. In the POM-Ru system, a comparative study of the luminescence quenching showed that the electron transfer is still more important in the covalently bonded hybrids than in systems where the POM and the ruthenium complexes are assembled via electrostatic interactions.

15.
Phys Chem Chem Phys ; 13(47): 20946-53, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22005714

RESUMO

On the route to single (large) molecule unimolecular chemistry, the adsorption of a photochromic dithienylethene dye on Cu(111) at a submonolayer level has been studied by Ultra High Vacuum-Scanning Tunneling Microscopy at Low Temperature. This technique has shown that the observed adsorbed molecule's shape is compatible with an helical conformation but has also revealed a surrounding electronic corrugation due to the perturbed surface states. Careful examination of the standing wave pattern indicated that only a part of the molecule is indeed interacting with the metallic substrate. Geometric considerations were used to infer that the bridging ethene moiety could be responsible for the electronic scattering. Scanning Tunneling Spectroscopy has shown a substantial amount of charge transfer from the surface to the adsorbate. The hypothesis that this precise double bond is a reactive locus toward charge transfer processes is confirmed by the electrochemical results: this double bond is indeed reduced upon coulometric reduction on glassy carbon. Furthermore, the use of a copper cathode strongly facilitates the reduction since a +0.6 V shift was recorded.

16.
J Colloid Interface Sci ; 603: 333-343, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34197983

RESUMO

HYPOTHESIS: Recently, a low molecular weight hydrogel based on a carbohydrate alkyl amide has been successfully used as biomaterial for neuron cell culture and for 3D printing. Varying the molecular structure should make it possible to extend the library of carbohydrate low molecular weight hydrogels available for these applications and to improve their performances. EXPERIMENTS: Thirteen molecules easy to synthetize and designed to be potentially biocompatible were prepared. They are based on gluconamide, glucoheptonamide, galactonamide, glucamide, aliphatic chains and glycine. Their gelation in water was investigated in thermal conditions and wet spinning conditions, namely by dimethylsulfoxide-water exchange under injection. FINDINGS: Nine molecules give hydrogels in thermal conditions. By wet spinning, six molecules self-assemble fast enough, within few seconds, to form continous hydrogel filaments. Therefore, the method enables to shape by injection these mechanically fragile hydrogels, notably in the perspective of 3D printing. Depending on the molecular structure, persistent or soluble gel filaments are obtained. The microstructures are varied, featuring entangled ribbons, platelets or particles. In thermal gelation, molecules with a symmetrical polar head (galacto, glucoheptono) give flat ribbons and molecules with an asymmetrical polar head (gluco) give helical ribbons. The introduction of an extra glycine linker disturbs this trend.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Carboidratos , Peso Molecular , Impressão Tridimensional
17.
Photochem Photobiol Sci ; 9(2): 199-207, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20126795

RESUMO

The photochromic, thermochromic and metallochromic behaviour of a series of three spiro[indoline-8-(benzothiazol-2-yl)-benzopyrans] has been investigated. The thermodynamic and kinetic parameters of their thermal equilibrium between the ring-closed (spiro) and ring-opened (merocyanine) isomeric forms have been determined using UV-Vis absorption and (1)H NMR spectroscopies. By adding Co(ii) and Ni(ii) ions in acetonitrile solution, 1 : 1 and 1 : 2 metal : merocyanine complexes are formed simultaneously. Using appropriate numerical methods, the kinetic analysis of the complexation allowed us to determine accurately key thermodynamic and spectroscopic parameters of the metal complexes. Results showed that the complexation strength is very sensitive to the size of the indoline nitrogen substituent. Complexation can be reversed by shining white light on the coloured complexes which regenerates the inactive spiropyran form, and releases the metallic ion; hence, these systems display fully reversible negative photochromism. The Zn(ii) complexes exhibit intense fluorescence in the 600-800 nm wavelength range. All these behaviours make these spiropyrans bearing benzothiazole heterocycles promising building blocks for the future construction of photodynamic chemosensors for transition metal ions.

18.
PLoS One ; 14(12): e0225729, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31815963

RESUMO

Restricted and controlled drug delivery to the heart remains a challenge giving frequent off-target effects as well as limited retention of drugs in the heart. There is a need to develop and optimize tools to allow for improved design of drug candidates for treatment of heart diseases. Over the last decade, novel drug platforms and nanomaterials were designed to confine bioactive materials to the heart. Yet, the research remains in its infancy, not only in the development of tools but also in the understanding of effects of these materials on cardiac function and tissue integrity. Upconverting nanoparticles are nanomaterials that recently accelerated interest in theranostic nanomedicine technologies. Their unique photophysical properties allow for sensitive in vivo imaging that can be combined with spatio-temporal control for targeted release of encapsulated drugs. Here we synthesized upconverting NaYF4:Yb,Tm nanoparticles and show for the first time their innocuity in the heart, when injected in the myocardium or in the pericardial space in mice. Nanoparticle retention and upconversion in the cardiac region did not alter heart rate variability, nor cardiac function as determined over a 15-day time course ensuing the sole injection. Altogether, our nanoparticles show innocuity primarily in the pericardial region and can be safely used for controlled spatiotemporal drug delivery. Our results support the use of upconverting nanoparticles as potential theranostics tools overcoming some of the key limitations associated with conventional experimental cardiology.


Assuntos
Cardiopatias/diagnóstico , Cardiopatias/terapia , Nanopartículas/uso terapêutico , Nanomedicina Teranóstica , Animais , Peso Corporal , Cardiopatias/fisiopatologia , Testes de Função Cardíaca , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura
19.
J Phys Chem B ; 111(24): 6788-97, 2007 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-17441758

RESUMO

Three centers models adapted to the description of electron transfer through a bridge are discussed, with a special emphasis on potential energy surfaces. A short historical review of the available models is given, with a particular interest on the Bersuker-Borshch-Chibotaru model (1989) and the Lambert-Nöll-Schelter model (2002). We propose our own model, inspired from the Bersuker-Borshch-Chibotaru model, but with a more physical discussion of the parameters and coordinates. The diabatic surfaces, before the intervention of electronic couplings between external site and bridge, consist of three revolution paraboloids of equal radii. The bottoms of the paraboloids do not form in general an equilateral triangle; they form an isosceles one. At this stage, the basic parameters are the ones describing the position of the third paraboloid (corresponding to a redox process on the bridge) with respect to the other two. We define in particular an energy shift parameter (Delta) and a depth parameter (d), the latter corresponding to the position of this paraboloid in the third dimension, i.e., along a coordinate of reaction perpendicular to the usual reaction coordinate. The topology of diabatic and adiabatic surfaces is discussed. As an application, we explain the contrasted behavior of two mixed valence systems bridged by anthracene and dimethoxybenzodithiophene, which differ by the value of the d parameter.

20.
J Phys Chem B ; 120(36): 9778-87, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27490372

RESUMO

The behavior of highly concentrated aqueous solutions of two thermoresponsive polymers poly(N-isopropylacrylamide) (PNIPAm) and poly(N-vinylcaprolactam) (PVCL) have been investigated by terahertz time-domain spectroscopy (THz-TDS). Measurements have been performed for concentrations up to 20 wt %, over a frequency range from 0.3 to 1.5 THz and for temperatures from 20 to 45 °C including the zone for lower critical solution temperature (LCST). THz-TDS enables the study of the behavior of water present in the solution (i.e., free or bound to the polymer). From these measurements, in addition to phase transition temperature, thermodynamic data such as variation of enthalpy and entropy can be inferred. Thanks to these data, further insights upon the mechanism involved during the dehydration phenomenon were obtained. These results were compared to the ones issued from dynamic light scattering, spectroscopy, or microscopy techniques to underline the interest to use THz-TDS as a powerful tool to characterize the behavior of thermoresponsive polymers in highly concentrated solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA