Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Genome Res ; 32(10): 1862-1875, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109150

RESUMO

Despite insertions and deletions being the most common structural variants (SVs) found across genomes, not much is known about how much these SVs vary within populations and between closely related species, nor their significance in evolution. To address these questions, we characterized the evolution of indel SVs using genome assemblies of three closely related Heliconius butterfly species. Over the relatively short evolutionary timescales investigated, up to 18.0% of the genome was composed of indels between two haplotypes of an individual Heliconius charithonia butterfly and up to 62.7% included lineage-specific SVs between the genomes of the most distant species (11 Mya). Lineage-specific sequences were mostly characterized as transposable elements (TEs) inserted at random throughout the genome and their overall distribution was similarly affected by linked selection as single nucleotide substitutions. Using chromatin accessibility profiles (i.e., ATAC-seq) of head tissue in caterpillars to identify sequences with potential cis-regulatory function, we found that out of the 31,066 identified differences in chromatin accessibility between species, 30.4% were within lineage-specific SVs and 9.4% were characterized as TE insertions. These TE insertions were localized closer to gene transcription start sites than expected at random and were enriched for sites with significant resemblance to several transcription factor binding sites with known function in neuron development in Drosophila We also identified 24 TE insertions with head-specific chromatin accessibility. Our results show high rates of structural genome evolution that were previously overlooked in comparative genomic studies and suggest a high potential for structural variation to serve as raw material for adaptive evolution.


Assuntos
Borboletas , Animais , Borboletas/genética , Cromatina/genética , Elementos de DNA Transponíveis/genética , Genômica , Mutação INDEL , Drosophila/genética , Evolução Molecular
2.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35012980

RESUMO

Mating cues evolve rapidly and can contribute to species formation and maintenance. However, little is known about how sexual signals diverge and how this variation integrates with other barrier loci to shape the genomic landscape of reproductive isolation. Here, we elucidate the genetic basis of ultraviolet (UV) iridescence, a courtship signal that differentiates the males of Colias eurytheme butterflies from a sister species, allowing females to avoid costly heterospecific matings. Anthropogenic range expansion of the two incipient species established a large zone of secondary contact across the eastern United States with strong signatures of genomic admixtures spanning all autosomes. In contrast, Z chromosomes are highly differentiated between the two species, supporting a disproportionate role of sex chromosomes in speciation known as the large-X (or large-Z) effect. Within this chromosome-wide reproductive barrier, linkage mapping indicates that cis-regulatory variation of bric a brac (bab) underlies the male UV-iridescence polymorphism between the two species. Bab is expressed in all non-UV scales, and butterflies of either species or sex acquire widespread ectopic iridescence following its CRISPR knockout, demonstrating that Bab functions as a suppressor of UV-scale differentiation that potentiates mating cue divergence. These results highlight how a genetic switch can regulate a premating signal and integrate with other reproductive barriers during intermediate phases of speciation.


Assuntos
Borboletas/genética , Borboletas/efeitos da radiação , Genes de Troca , Iridescência/genética , Enxofre/química , Raios Ultravioleta , Animais , Sistemas CRISPR-Cas/genética , Cromossomos/genética , Genes de Insetos , Loci Gênicos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Iridescência/efeitos da radiação , Masculino , Comportamento Sexual Animal/fisiologia , Especificidade da Espécie , Simpatria/genética , Asas de Animais/metabolismo
3.
Mol Biol Evol ; 39(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36251882

RESUMO

Neotropical Heliconius butterflies are well known for their intricate behaviors and multiple instances of incipient speciation. Chemosensing plays a fundamental role in the life history of these groups of butterflies and in the establishment of reproductive isolation. However, chemical communication involves synergistic sensory and accessory functions, and it remains challenging to investigate the molecular mechanisms underlying behavioral differences. Here, we examine the gene expression profiles and genomic divergence of three sensory tissues (antennae, legs, and mouthparts) between sexes (females and males) and life stages (different adult stages) in two hybridizing butterflies, Heliconius melpomene and Heliconius cydno. By integrating comparative transcriptomic and population genomic approaches, we found evidence of widespread gene expression divergence, supporting a crucial role of sensory tissues in the establishment of species barriers. We also show that sensory diversification increases in a manner consistent with evolutionary divergence based on comparison with the more distantly related species Heliconius charithonia. The findings of our study strongly support the unique chemosensory function of antennae in all three species, the importance of the Z chromosome in interspecific divergence, and the nonnegligible role of nonchemosensory genes in the divergence of chemosensory tissues. Collectively, our results provide a genome-wide illustration of diversification in the chemosensory system under incomplete reproductive isolation, revealing strong molecular separation in the early stage of speciation. Here, we provide a unique perspective and relevant view of the genetic architecture (sensory and accessory functions) of chemosensing beyond the classic chemosensory gene families, leading to a better understanding of the magnitude and complexity of molecular changes in sensory tissues that contribute to the establishment of reproductive isolation and speciation.


Assuntos
Borboletas , Animais , Feminino , Masculino , Borboletas/genética , Especiação Genética , Isolamento Reprodutivo , Evolução Biológica , Expressão Gênica
4.
Mol Biol Evol ; 38(11): 5021-5033, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34323995

RESUMO

Sexually dimorphic development is responsible for some of the most remarkable phenotypic variation found in nature. Alternative splicing of the transcription factor gene doublesex (dsx) is a highly conserved developmental switch controlling the expression of sex-specific pathways. Here, we leverage sex-specific differences in butterfly wing color pattern to characterize the genetic basis of sexually dimorphic development. We use RNA-seq, immunolocalization, and motif binding site analysis to test specific predictions about the role of dsx in the development of structurally based ultraviolet (UV) wing patterns in Zerene cesonia (Southern Dogface). Unexpectedly, we discover a novel duplication of dsx that shows a sex-specific burst of expression associated with the sexually dimorphic UV coloration. The derived copy consists of a single exon that encodes a DNA binding but no protein-binding domain and has experienced rapid amino-acid divergence. We propose the novel dsx paralog may suppress UV scale differentiation in females, which is supported by an excess of Dsx-binding sites at cytoskeletal and chitin-related genes with sex-biased expression. These findings illustrate the molecular flexibility of the dsx gene in mediating the differentiation of secondary sexual characteristics.


Assuntos
Borboletas , Proteínas de Drosophila , Processamento Alternativo , Animais , Sítios de Ligação , Borboletas/genética , Borboletas/metabolismo , Proteínas de Drosophila/genética , Feminino , Masculino , Caracteres Sexuais , Asas de Animais
5.
Proc Natl Acad Sci U S A ; 116(48): 24174-24183, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712408

RESUMO

Color pattern mimicry in Heliconius butterflies is a classic case study of complex trait adaptation via selection on a few large effect genes. Association studies have linked color pattern variation to a handful of noncoding regions, yet the presumptive cis-regulatory elements (CREs) that control color patterning remain unknown. Here we combine chromatin assays, DNA sequence associations, and genome editing to functionally characterize 5 cis-regulatory elements of the color pattern gene optix We were surprised to find that the cis-regulatory architecture of optix is characterized by pleiotropy and regulatory fragility, where deletion of individual cis-regulatory elements has broad effects on both color pattern and wing vein development. Remarkably, we found orthologous cis-regulatory elements associate with wing pattern convergence of distantly related comimics, suggesting that parallel coevolution of ancestral elements facilitated pattern mimicry. Our results support a model of color pattern evolution in Heliconius where changes to ancient, multifunctional cis-regulatory elements underlie adaptive radiation.


Assuntos
Borboletas/fisiologia , Elementos Facilitadores Genéticos , Pleiotropia Genética , Pigmentação/fisiologia , Asas de Animais/fisiologia , Adaptação Fisiológica/genética , Animais , Sistemas CRISPR-Cas , Quimera , Evolução Molecular , Genoma de Inseto , Estudo de Associação Genômica Ampla , Proteínas de Insetos/genética , Filogenia , Pigmentação/genética , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico
7.
Proc Biol Sci ; 287(1931): 20201267, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32693728

RESUMO

Müllerian mimicry strongly exemplifies the power of natural selection. However, the exact measure of such adaptive phenotypic convergence and the possible causes of its imperfection often remain unidentified. Here, we first quantify wing colour pattern differences in the forewing region of 14 co-mimetic colour pattern morphs of the butterfly species Heliconius erato and Heliconius melpomene and measure the extent to which mimicking colour pattern morphs are not perfectly identical. Next, using gene-editing CRISPR/Cas9 KO experiments of the gene WntA, which has been mapped to colour pattern diversity in these butterflies, we explore the exact areas of the wings in which WntA affects colour pattern formation differently in H. erato and H. melpomene. We find that, while the relative size of the forewing pattern is generally nearly identical between co-mimics, the CRISPR/Cas9 KO results highlight divergent boundaries in the wing that prevent the co-mimics from achieving perfect mimicry. We suggest that this mismatch may be explained by divergence in the gene regulatory network that defines wing colour patterning in both species, thus constraining morphological evolution even between closely related species.


Assuntos
Mimetismo Biológico , Borboletas/fisiologia , Animais , Borboletas/genética , Borboletas/crescimento & desenvolvimento , Genes de Insetos , Pigmentação/genética , Seleção Genética , Asas de Animais
8.
Mol Ecol ; 27(19): 3852-3872, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29569384

RESUMO

Sex chromosomes are disproportionately involved in reproductive isolation and adaptation. In support of such a "large-X" effect, genome scans between recently diverged populations and species pairs often identify distinct patterns of divergence on the sex chromosome compared to autosomes. When measures of divergence between populations are higher on the sex chromosome compared to autosomes, such patterns could be interpreted as evidence for faster divergence on the sex chromosome, that is "faster-X", barriers to gene flow on the sex chromosome. However, demographic changes can strongly skew divergence estimates and are not always taken into consideration. We used 224 whole-genome sequences representing 36 populations from two Heliconius butterfly clades (H. erato and H. melpomene) to explore patterns of Z chromosome divergence. We show that increased divergence compared to equilibrium expectations can in many cases be explained by demographic change. Among Heliconius erato populations, for instance, population size increase in the ancestral population can explain increased absolute divergence measures on the Z chromosome compared to the autosomes, as a result of increased ancestral Z chromosome genetic diversity. Nonetheless, we do identify increased divergence on the Z chromosome relative to the autosomes in parapatric or sympatric species comparisons that imply postzygotic reproductive barriers. Using simulations, we show that this is consistent with reduced gene flow on the Z chromosome, perhaps due to greater accumulation of incompatibilities. Our work demonstrates the importance of taking demography into account to interpret patterns of divergence on the Z chromosome, but nonetheless provides evidence to support the Z chromosome as a strong barrier to gene flow in incipient Heliconius butterfly species.


Assuntos
Borboletas/genética , Fluxo Gênico , Especiação Genética , Genética Populacional , Cromossomos Sexuais/genética , Animais , América Central , Feminino , Masculino , Modelos Genéticos , América do Sul
9.
Genome Res ; 24(8): 1316-33, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24823669

RESUMO

Hybrid zones can be valuable tools for studying evolution and identifying genomic regions responsible for adaptive divergence and underlying phenotypic variation. Hybrid zones between subspecies of Heliconius butterflies can be very narrow and are maintained by strong selection acting on color pattern. The comimetic species, H. erato and H. melpomene, have parallel hybrid zones in which both species undergo a change from one color pattern form to another. We use restriction-associated DNA sequencing to obtain several thousand genome-wide sequence markers and use these to analyze patterns of population divergence across two pairs of parallel hybrid zones in Peru and Ecuador. We compare two approaches for analysis of this type of data-alignment to a reference genome and de novo assembly-and find that alignment gives the best results for species both closely (H. melpomene) and distantly (H. erato, ∼15% divergent) related to the reference sequence. Our results confirm that the color pattern controlling loci account for the majority of divergent regions across the genome, but we also detect other divergent regions apparently unlinked to color pattern differences. We also use association mapping to identify previously unmapped color pattern loci, in particular the Ro locus. Finally, we identify a new cryptic population of H. timareta in Ecuador, which occurs at relatively low altitude and is mimetic with H. melpomene malleti.


Assuntos
Borboletas/genética , Genoma de Inseto , Animais , Borboletas/anatomia & histologia , Mapeamento Cromossômico , Evolução Molecular , Loci Gênicos , Especiação Genética , Variação Genética , Fenótipo , Filogenia , Pigmentação , Asas de Animais/anatomia & histologia
10.
Genome Res ; 23(8): 1248-57, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23674305

RESUMO

Identifying the genetic changes driving adaptive variation in natural populations is key to understanding the origins of biodiversity. The mosaic of mimetic wing patterns in Heliconius butterflies makes an excellent system for exploring adaptive variation using next-generation sequencing. In this study, we use a combination of techniques to annotate the genomic interval modulating red color pattern variation, identify a narrow region responsible for adaptive divergence and convergence in Heliconius wing color patterns, and explore the evolutionary history of these adaptive alleles. We use whole genome resequencing from four hybrid zones between divergent color pattern races of Heliconius erato and two hybrid zones of the co-mimic Heliconius melpomene to examine genetic variation across 2.2 Mb of a partial reference sequence. In the intergenic region near optix, the gene previously shown to be responsible for the complex red pattern variation in Heliconius, population genetic analyses identify a shared 65-kb region of divergence that includes several sites perfectly associated with phenotype within each species. This region likely contains multiple cis-regulatory elements that control discrete expression domains of optix. The parallel signatures of genetic differentiation in H. erato and H. melpomene support a shared genetic architecture between the two distantly related co-mimics; however, phylogenetic analysis suggests mimetic patterns in each species evolved independently. Using a combination of next-generation sequencing analyses, we have refined our understanding of the genetic architecture of wing pattern variation in Heliconius and gained important insights into the evolution of novel adaptive phenotypes in natural populations.


Assuntos
Borboletas/genética , Evolução Molecular , Genoma de Inseto , Pigmentação/genética , Adaptação Biológica/genética , Distribuição Animal , Animais , Sequência de Bases , Teorema de Bayes , Sequência Conservada , Especiação Genética , Genótipo , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Funções Verossimilhança , Modelos Genéticos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Panamá , Fenótipo , Filogenia , Análise de Sequência de DNA , América do Sul , Sintenia , Transcriptoma , Asas de Animais/fisiologia
11.
BMC Evol Biol ; 15: 204, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26403600

RESUMO

BACKGROUND: A key to understanding the origins of species is determining the evolutionary processes that drive the patterns of genomic divergence during speciation. New genomic technologies enable the study of high-resolution genomic patterns of divergence across natural speciation continua, where taxa pairs with different levels of reproductive isolation can be used as proxies for different stages of speciation. Empirical studies of these speciation continua can provide valuable insights into how genomes diverge during speciation. METHODS: We examine variation across a handful of genomic regions in parapatric and allopatric populations of Heliconius butterflies with varying levels of reproductive isolation. Genome sequences were mapped to 2.2-Mb of the H. erato genome, including 1-Mb across the red color pattern locus and multiple regions unlinked to color pattern variation. RESULTS: Phylogenetic analyses reveal a speciation continuum of pairs of hybridizing races and incipient species in the Heliconius erato clade. Comparisons of hybridizing pairs of divergently colored races and incipient species reveal that genomic divergence increases with ecological and reproductive isolation, not only across the locus responsible for adaptive variation in red wing coloration, but also at genomic regions unlinked to color pattern. DISCUSSION: We observe high levels of divergence between the incipient species H. erato and H. himera, suggesting that divergence may accumulate early in the speciation process. Comparisons of genomic divergence between the incipient species and allopatric races suggest that limited gene flow cannot account for the observed high levels of divergence between the incipient species. CONCLUSIONS: Our results provide a reconstruction of the speciation continuum across the H. erato clade and provide insights into the processes that drive genomic divergence during speciation, establishing the H. erato clade as a powerful framework for the study of speciation.


Assuntos
Borboletas/anatomia & histologia , Borboletas/genética , Fluxo Gênico , Genes de Insetos , Pigmentação , Asas de Animais/anatomia & histologia , Animais , Evolução Biológica , Borboletas/classificação , Especiação Genética , Hibridização Genética , Filogenia
13.
Parasitology ; 142(4): 612-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25351897

RESUMO

Malaria parasites have had profound effects on human populations for millennia, but other terrestrial vertebrates are impacted by malaria as well. Entire species of birds have been driven to extinction, and many others are threatened by population declines. Recent studies have shown that host-switching is quite common among malaria parasite lineages, and these switches often involve a significant shift in the environment in which the parasites find themselves, including nucleated vs non-nucleated red blood cells and red vs white blood cells. Therefore, it is important to understand how parasites adapt to these different host environments. The mitochondrial cytochrome b (cyt b) gene shows evidence of adaptive molecular evolution among malaria parasite groups, putatively because of its critical role in the electron transport chain (ETC) in cellular metabolism. Two hypotheses were addressed here: (1) mitochondrial components of the ETC (cyt b and cytochrome oxidase 1 [COI]) should show evidence of adaptive evolution (i.e., selection) and (2) selection should be evident in host switches. Overall we found a signature of constraint (e.g., purifying selection) across the four genes included here, but we also found evidence of positive selection associated with host switches in cyt b and, surprisingly, in (apicoplast) caseinolytic protease C. These results suggest that evidence of selection should be widespread across these parasite genomes.


Assuntos
Evolução Molecular , Haemosporida/genética , Adaptação Biológica/genética , Animais , Teorema de Bayes , DNA de Protozoário/química , Eritrócitos/parasitologia , Variação Genética , Haemosporida/classificação , Interações Hospedeiro-Parasita/genética , Insetos Vetores/classificação , Insetos Vetores/parasitologia , Leucócitos/parasitologia , Funções Verossimilhança , Modelos Genéticos , Filogenia , Alinhamento de Sequência
14.
Proc Natl Acad Sci U S A ; 109(31): 12632-7, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22802635

RESUMO

Although animals display a rich variety of shapes and patterns, the genetic changes that explain how complex forms arise are still unclear. Here we take advantage of the extensive diversity of Heliconius butterflies to identify a gene that causes adaptive variation of black wing patterns within and between species. Linkage mapping in two species groups, gene-expression analysis in seven species, and pharmacological treatments all indicate that cis-regulatory evolution of the WntA ligand underpins discrete changes in color pattern features across the Heliconius genus. These results illustrate how the direct modulation of morphogen sources can generate a wide array of unique morphologies, thus providing a link between natural genetic variation, pattern formation, and adaptation.


Assuntos
Borboletas/fisiologia , Evolução Molecular , Proteínas de Insetos/metabolismo , Pigmentação/fisiologia , Asas de Animais/metabolismo , Proteínas Wnt/metabolismo , Animais , Sequência de Bases , Genes de Insetos/fisiologia , Ligação Genética , Variação Genética , Proteínas de Insetos/genética , Dados de Sequência Molecular , Proteínas Wnt/genética
15.
Adv Exp Med Biol ; 781: 249-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24277304

RESUMO

Fueled by new technologies that allow rapid and inexpensive assessment of fine scale individual genomic variation, researchers are making transformational discoveries at the interface between genomes and biological complexity. Here we review genomic research in Heliconius butterflies - a radiation characterized by extraordinary phenotypic diversity in warningly colored wing patterns and composed of a continuum of taxa across the stages of speciation. These characteristics, coupled with a 50-year legacy of ecological and behavioral research, offer exceptional prospects for genomic studies into the nature of adaptive differences and the formation of new species. Research in Heliconius provides clear connections between genotype, phenotype, and fitness of wing color patterns shown to underlie adaptation and speciation. This research is challenging our perceptions about how speciation occurs in the presence of gene flow and the role of hybridization in generating adaptive novelty. With the release of the first Heliconius genome assembly, emerging genomic studies are painting a dynamic picture of the evolving species boundary. As the field of speciation genomics moves beyond describing patterns, towards a more integrated understanding of the process of speciation, groups such as Heliconius, where there is a clear speciation continuum and the traits underlying adaptation and speciation are known, will provide a roadmap for identifying variation crucial in the origins of biodiversity.


Assuntos
Adaptação Biológica/fisiologia , Biodiversidade , Evolução Biológica , Borboletas/fisiologia , Genoma de Inseto/fisiologia , Animais
16.
Proc Natl Acad Sci U S A ; 108(49): 19666-71, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22084094

RESUMO

The mimetic butterflies Heliconius erato and Heliconius melpomene have undergone parallel radiations to form a near-identical patchwork of over 20 different wing-pattern races across the Neotropics. Previous molecular phylogenetic work on these radiations has suggested that similar but geographically disjunct color patterns arose multiple times independently in each species. The neutral markers used in these studies, however, can move freely across color pattern boundaries, and therefore might not represent the history of the adaptive traits as accurately as markers linked to color pattern genes. To assess the evolutionary histories across different loci, we compared relationships among races within H. erato and within H. melpomene using a series of unlinked genes, genes linked to color pattern loci, and optix, a gene recently shown to control red color-pattern variation. We found that although unlinked genes partition populations by geographic region, optix had a different history, structuring lineages by red color patterns and supporting a single origin of red-rayed patterns within each species. Genes closely linked (80-250 kb) to optix exhibited only weak associations with color pattern. This study empirically demonstrates the necessity of examining phenotype-determining genomic regions to understand the history of adaptive change in rapidly radiating lineages. With these refined relationships, we resolve a long-standing debate about the origins of the races within each species, supporting the hypothesis that the red-rayed Amazonian pattern evolved recently and expanded, causing disjunctions of more ancestral patterns.


Assuntos
Borboletas/genética , Variação Genética , Filogenia , Asas de Animais/metabolismo , Animais , Borboletas/classificação , Região do Caribe , Núcleo Celular/genética , Análise por Conglomerados , DNA Mitocondrial/química , DNA Mitocondrial/genética , Genes de Insetos/genética , Geografia , Haplótipos , Dados de Sequência Molecular , Fenótipo , Pigmentação/genética , Análise de Sequência de DNA , América do Sul , Especificidade da Espécie
17.
Proc Natl Acad Sci U S A ; 107(16): 7365-70, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20368448

RESUMO

Mimicry among Heliconius butterflies provides a classic example of coevolution but unresolved relationships among mimetic subspecies have prevented examination of codiversification between species. We present amplified fragment length polymorphism and mtDNA datasets for the major comimetic races of Heliconius erato and H. melpomene. The AFLP data reveal unprecedented resolution, clustering samples by geography and race in both species. Our results show that, although H. erato and H. melpomene co-occur, mimic each other, and exhibit parallel shifts in color pattern, they experienced very different modes of diversification and geographic histories. Our results suggest that H. erato originated on the western side of South America whereas H. melpomene originated in the east. H. erato underwent rapid diversification and expansion with continued gene-flow following diversification, resulting in widely dispersed sister taxa. In contrast, H. melpomene underwent a slower pace of diversification with lower levels of gene flow, producing a stepwise directional expansion from west to east. Our results also suggest that each of the three main wing pattern phenotypes originated and/or was lost multiple times in each species. The rayed pattern is likely to be the ancestral phenotype in H. erato whereas postman or red patch is likely to be ancestral in H. melpomene. Finally, H. cydno and H. himera are monophyletic entities clearly nested within H. melpomene and H. erato, rather than being their respective sister species. Estimates of mtDNA divergence suggest a minimum age of 2.8 and 2.1 My for H. erato and H. melpomene, respectively, placing their origins in the late Pliocene.


Assuntos
Borboletas/genética , Borboletas/fisiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Análise por Conglomerados , DNA Mitocondrial/metabolismo , Evolução Molecular , Geografia , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Filogenia , Polimorfismo de Fragmento de Restrição , Especificidade da Espécie , Fatores de Tempo
18.
PLoS Genet ; 6(2): e1000794, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20140188

RESUMO

Wing patterning in Heliconius butterflies is a longstanding example of both Müllerian mimicry and phenotypic radiation under strong natural selection. The loci controlling such patterns are "hotspots" for adaptive evolution with great allelic diversity across different species in the genus. We characterise nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium, and candidate gene expression at two loci and across multiple hybrid zones in Heliconius melpomene and relatives. Alleles at HmB control the presence or absence of the red forewing band, while alleles at HmYb control the yellow hindwing bar. Across HmYb two regions, separated by approximately 100 kb, show significant genotype-by-phenotype associations that are replicated across independent hybrid zones. In contrast, at HmB a single peak of association indicates the likely position of functional sites at three genes, encoding a kinesin, a G-protein coupled receptor, and an mRNA splicing factor. At both HmYb and HmB there is evidence for enhanced linkage disequilibrium (LD) between associated sites separated by up to 14 kb, suggesting that multiple sites are under selection. However, there was no evidence for reduced variation or deviations from neutrality that might indicate a recent selective sweep, consistent with these alleles being relatively old. Of the three genes showing an association with the HmB locus, the kinesin shows differences in wing disc expression between races that are replicated in the co-mimic, Heliconius erato, providing striking evidence for parallel changes in gene expression between Müllerian co-mimics. Wing patterning loci in Heliconius melpomene therefore show a haplotype structure maintained by selection, but no evidence for a recent selective sweep. The complex genetic pattern contrasts with the simple genetic basis of many adaptive traits studied previously, but may provide a better model for most adaptation in natural populations that has arisen over millions rather than tens of years.


Assuntos
Adaptação Fisiológica/genética , Genética Populacional , Genoma/genética , Mimetismo Molecular/genética , Animais , Borboletas/genética , Cromossomos Artificiais Bacterianos/genética , Regulação da Expressão Gênica , Genes de Insetos/genética , Loci Gênicos/genética , Variação Genética , Genótipo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Desequilíbrio de Ligação/genética , Fenótipo , Filogenia , Dinâmica Populacional , Seleção Genética/genética , Especificidade da Espécie
19.
PLoS Genet ; 6(2): e1000796, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20140239

RESUMO

Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.


Assuntos
Adaptação Fisiológica/genética , Borboletas/genética , Genética Populacional , Genoma/genética , Animais , Cromossomos Artificiais Bacterianos/genética , Regulação da Expressão Gênica , Loci Gênicos/genética , Variação Genética , Genótipo , Hibridização Genética , Desequilíbrio de Ligação/genética , Fases de Leitura Aberta/genética , Peru , Fenótipo , Mapeamento Físico do Cromossomo , Pigmentação/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
20.
Evolution ; 77(12): 2619-2630, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37797261

RESUMO

Iridescent ultraviolet (IUV) patterns on pierid butterfly wings are phenotypic adaptations commonly used as sexual signals, generated by scales with ultrastructural modifications. Pierid IUV patterns are sexually dichromatic, with reduced size in females, where conspicuous sexual signaling balances courtship against ecological predation. There have been no phylogenetic reconstructions of IUV within Pieridae and little morphological characterization of phenotypic diversity. Our genus-wide characterization of IUV revealed the uniform similarity of stacked lamellar ridges on the dorsal surface of cover scales. We tested a hypothesis of single versus multiple origins by reconstructing a phylogeny of 534 species (~43.2% described species), with all genera represented, and a trait matrix of 734 species (~59.4%) screened for IUV. A single, early dimorphic origin of IUV followed by several losses and gains received strong support, concluding that IUV patterns and structural coloration are old traits. Collectively, these results support the homology of IUV scales and patterns that diversified within several lineages, suggesting an interplay between female-mediated sexual selection and ecological predatory selection.


Assuntos
Borboletas , Animais , Feminino , Borboletas/genética , Borboletas/anatomia & histologia , Filogenia , Asas de Animais/anatomia & histologia , Seleção Sexual , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA