Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Plant J ; 114(1): 7-22, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36794900

RESUMO

Plants colonized the land approximately 470 million years ago, coinciding with the development of apical cells that divide in three planes. The molecular mechanisms that underly the development of the 3D growth pattern are poorly understood, mainly because 3D growth in seed plants starts during embryo development. In contrast, the transition from 2D to 3D growth in the moss Physcomitrium patens has been widely studied, and it involves a large turnover of the transcriptome to allow the establishment of stage-specific transcripts that facilitate this developmental transition. N6 -Methyladenosine (m6 A) is the most abundant, dynamic and conserved internal nucleotide modification present on eukaryotic mRNA and serves as a layer of post-transcriptional regulation directly affecting several cellular processes and developmental pathways in many organisms. In Arabidopsis, m6 A has been reported to be essential for organ growth and determination, embryo development and responses to environmental signals. In this study, we identified the main genes of the m6 A methyltransferase complex (MTC), MTA, MTB and FIP37, in P. patens and demonstrate that their inactivation leads to the loss of m6 A in mRNA, a delay in the formation of gametophore buds and defects in spore development. Genome-wide analysis revealed several transcripts affected in the Ppmta background. We demonstrate that the PpAPB1-PpAPB4 transcripts, encoding central factors orchestrating the transition from 2D to 3D growth in P. patens, are modified by m6 A, whereas in the Ppmta mutant the lack of the m6 A marker is associated with a corresponding decrease in transcript accumulation. Overall, we suggest that m6 A is essential to enable the proper accumulation of these and other bud-specific transcripts directing the turnover of stage-specific transcriptomes, and thus promoting the transition from protonema to gametophore buds in P. patens.


Assuntos
Arabidopsis , Bryopsida , RNA Mensageiro/genética , Bryopsida/genética , Proliferação de Células , Arabidopsis/genética , Transcriptoma
2.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928430

RESUMO

Arsenic compounds have been used as therapeutic alternatives for several diseases including cancer. In the following work, we obtained arsenic nanoparticles (AsNPs) produced by an anaerobic bacterium from the Salar de Ascotán, in northern Chile, and evaluated their effects on the human oral squamous carcinoma cell line OECM-1. Resazurin reduction assays were carried out on these cells using 1-100 µM of AsNPs, finding a concentration-dependent reduction in cell viability that was not observed for the non-tumoral gastric mucosa-derived cell line GES-1. To establish if these effects were associated with apoptosis induction, markers like Bcl2, Bax, and cleaved caspase 3 were analyzed via Western blot, executor caspases 3/7 via luminometry, and DNA fragmentation was analyzed by TUNEL assay, using 100 µM cisplatin as a positive control. OECM-1 cells treated with AsNPs showed an induction of both extrinsic and intrinsic apoptotic pathways, which can be explained by a significant decrease in P-Akt/Akt and P-ERK/ERK relative protein ratios, and an increase in both PTEN and p53 mRNA levels and Bit-1 relative protein levels. These results suggest a prospective mechanism of action for AsNPs that involves a potential interaction with extracellular matrix (ECM) components that reduces cell attachment and subsequently triggers anoikis, an anchorage-dependent type of apoptosis.


Assuntos
Anoikis , Apoptose , Arsênio , Nanopartículas , Humanos , Anoikis/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Nanopartículas/química , Arsênio/farmacologia , Arsênio/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Caspase 3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
J Exp Bot ; 74(5): 1642-1658, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36546370

RESUMO

Common bean (Phaseolus vulgaris L.) is one of the most consumed legumes in the human diet and a substantial source of dietary protein. A major problem for this rainfed crop is the decrease in grain yield caused by prolonged drought periods during the reproductive stage of plant development (terminal drought). Terminal drought remains a prevailing threat to the farming of this staple, with losses reaching >80%. Based on the high correlation between the resistance of common bean to terminal drought and efficient photoassimilate mobilization and biomass accumulation in seeds, we aimed to identify mechanisms implicated in its resistance to this stress. We used two representative Durango race common bean cultivars with contrasting yields under terminal drought, grown under well-watered or terminal drought conditions. Using comparative transcriptomic analysis focused on source leaves, pods, and seeds from both cultivars, we provide evidence indicating that under terminal drought the resistant cultivar promotes the build-up of transcripts involved in recycling carbon through photosynthesis, photorespiration, and CO2-concentrating mechanisms in pod walls, while in seeds, the induced transcripts participate in sink strength and respiration. Physiological data support this conclusion, implicating their relevance as key processes in the plant response to terminal drought.


Assuntos
Resistência à Seca , Phaseolus , Humanos , Phaseolus/metabolismo , Folhas de Planta/metabolismo , Grão Comestível , Secas
4.
Cell Mol Neurobiol ; 43(6): 2801-2813, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36680690

RESUMO

Vagus nerve innervates several organs including the heart, stomach, and pancreas among others. Somas of sensory neurons that project through the vagal nerve are located in the nodose ganglion. The presence of purinergic receptors has been reported in neurons and satellite glial cells in several sensory ganglia. In the nodose ganglion, calcium depletion-induced increases in neuron activity can be partly reversed by P2X7 blockers applied directly into the ganglion. The later suggest a possible role of P2X7 receptors in the modulation of neuronal activity within this sensory ganglion. We aimed to characterize the response to P2X7 activation in nodose ganglion neurons under physiological conditions. Using an ex vivo preparation for electrophysiological recordings of the neural discharges of nodose ganglion neurons, we found that treatments with ATP induce transient neuronal activity increases. Also, we found a concentration-dependent increase in neural activity in response to Bz-ATP (ED50 = 0.62 mM, a selective P2X7 receptor agonist), with a clear desensitization pattern when applied every ~ 30 s. Electrophysiological recordings from isolated nodose ganglion neurons reveal no differences in the responses to Bz-ATP and ATP. Finally, we showed that the P2X7 receptor was expressed in the rat nodose ganglion, both in neurons and satellite glial cells. Additionally, a P2X7 receptor negative allosteric modulator decreased the duration of Bz-ATP-induced maximal responses without affecting their amplitude. Our results show the presence of functional P2X7 receptors under physiological conditions within the nodose ganglion of the rat, and suggest that ATP modulation of nodose ganglion activity may be in part mediated by the activation of P2X7 receptors.


Assuntos
Gânglio Nodoso , Receptores Purinérgicos P2X7 , Ratos , Animais , Gânglio Nodoso/fisiologia , Nervo Vago/fisiologia , Trifosfato de Adenosina/farmacologia , Células Receptoras Sensoriais
5.
Protein Expr Purif ; 202: 106183, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36182030

RESUMO

Late embryogenic abundant proteins (LEA) are a group of proteins that accumulate during the desiccation phase of the seed and in response to water deficit in the plant. Most LEA proteins are highly hydrophilic and have physicochemical characteristics similar to those of intrinsically disordered proteins (IDPs). Although the function of LEA proteins is not fully understood, there is evidence indicating that these proteins have an important role in reducing the effects caused by water limitation. The analysis of the biochemical and physicochemical characteristics of LEA proteins is crucial to determine their function, for which it is necessary to obtain large amounts of pure protein. Within this current work, we have improved our previous TCA purification method used for basic recombinant LEA proteins to obtain acidic IDPs, the method reported here is fast and simple and is based on the enrichment of the protein of interest by boiling of the bacterial extract followed by a precipitation with different concentrations of TCA and salt. This protocol was applied to acidic and basic IDPs, represented by eight recombinant LEAs, resulting in milligram quantities of highly enriched proteins, which keep their in vitro functionality.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/metabolismo , Ácido Tricloroacético/metabolismo , Sementes/metabolismo , Cloreto de Sódio , Água/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Molecules ; 28(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959657

RESUMO

pH regulation is essential to allow normal cell function, and their imbalance is associated with different pathologic situations, including cancer. In this study, we present the synthesis of 2-(((2-aminoethyl)imino)methyl)phenol (HL1) and the iron (III) complex (Fe(L1)2Br, (C1)), confirmed by X-ray diffraction analysis. The absorption and emission properties of complex C1 were assessed in the presence and absence of different physiologically relevant analytes, finding a fluorescent turn-on when OH- was added. So, we determined the limit of detection (LOD = 3.97 × 10-9 M), stoichiometry (1:1), and association constant (Kas = 5.86 × 103 M-1). Using DFT calculations, we proposed a spontaneous decomposition mechanism for C1. After characterization, complex C1 was evaluated as an intracellular pH chemosensor on the human primary gastric adenocarcinoma (AGS) and non-tumoral gastric epithelia (GES-1) cell lines, finding fluorescent signal activation in the latter when compared to AGS cells due to the lower intracellular pH of AGS cells caused by the increased metabolic rate. However, when complex C1 was used on metastatic cancer cell lines (MKN-45 and MKN-74), a fluorescent turn-on was observed in both cell lines because the intracellular lactate amount increased. Our results could provide insights about the application of complex C1 as a metabolic probe to be used in cancer cell imaging.


Assuntos
Corantes Fluorescentes , Ferro , Humanos , Ferro/análise , Corantes Fluorescentes/química , Linhagem Celular , Concentração de Íons de Hidrogênio , Espectrometria de Fluorescência/métodos
7.
Plant J ; 105(3): 691-707, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33131171

RESUMO

Plants respond to adverse environmental cues by adjusting a wide variety of processes through highly regulated mechanisms to maintain plant homeostasis for survival. As a result of the sessile nature of plants, their response, adjustment and adaptation to the changing environment is intimately coordinated with their developmental programs through the crosstalk of regulatory networks. Germination is a critical process in the plant life cycle, and thus plants have evolved various strategies to control the timing of germination according to their local environment. The mechanisms involved in these adjustment responses are largely unknown, however. Here, we report that mutations in core elements of canonical RNA-directed DNA methylation (RdDM) affect the germination and post-germination growth of Arabidopsis seeds grown under salinity stress. Transcriptomic and whole-genome bisulfite sequencing (WGBS) analyses support the involvement of this pathway in the control of germination timing and post-germination growth under salinity stress by preventing the transcriptional activation of genes implicated in these processes. Subsequent transcriptional effects on genes that function in relation to these developmental events support this conclusion.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas Argonautas/genética , Metilação de DNA/fisiologia , Germinação/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Mutação , Plantas Geneticamente Modificadas , Salinidade , Plântula/crescimento & desenvolvimento , Sequenciamento Completo do Genoma
8.
J Exp Bot ; 73(19): 6525-6546, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35793147

RESUMO

To deal with increasingly severe periods of dehydration related to global climate change, it becomes increasingly important to understand the complex strategies many organisms have developed to cope with dehydration and desiccation. While it is undisputed that late embryogenesis abundant (LEA) proteins play a key role in the tolerance of plants and many anhydrobiotic organisms to water limitation, the molecular mechanisms are not well understood. In this review, we summarize current knowledge of the physiological roles of LEA proteins and discuss their potential molecular functions. As these are ultimately linked to conformational changes in the presence of binding partners, post-translational modifications, or water deprivation, we provide a detailed summary of current knowledge on the structure-function relationship of LEA proteins, including their disordered state in solution, coil to helix transitions, self-assembly, and their recently discovered ability to undergo liquid-liquid phase separation. We point out the promising potential of LEA proteins in biotechnological and agronomic applications, and summarize recent advances. We identify the most relevant open questions and discuss major challenges in establishing a solid understanding of how these intriguing molecules accomplish their tasks as cellular sentinels at the limits of surviving water scarcity.


Assuntos
Desidratação , Desenvolvimento Embrionário , Desidratação/metabolismo , Água/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Arch Pharm (Weinheim) ; 355(7): e2200042, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35435270

RESUMO

Neuroblastoma is one of the most frequent types of cancer found in infants, and traditional chemotherapy has limited efficacy against this pathology. Thus, the development of new compounds with higher activity and selectivity than traditional drugs is a current challenge in medicinal chemistry research. In this study, we report the synthesis of 21 chalcones with antiproliferative activity and selectivity against the neuroblastoma cell line SH-SY5Y. Then, we developed three-dimensional quantitative structure-activity relationship models (comparative molecular field analysis and comparative molecular similarity index analysis) with high-quality statistical values (q2 > 0.7; r2 > 0.8; r2 pred > 0.7), using IC50 and selectivity index (SI) data as dependent variables. With the information derived from these theoretical models, we designed and synthesized 16 new molecules to prove their consistency, finding good antiproliferative activity against SH-SY5Y cells on these derivatives, with three of them showing higher SI than the referential drugs 5-fluorouracil and cisplatin, displaying also a proapoptotic effect comparable to these drugs, as proven by measuring their effects on executor caspases 3/7 activity induction, Bcl-2/Bax messenger RNA levels alteration, and DNA fragmentation promotion.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Neuroblastoma , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Chalcona/farmacologia , Chalconas/farmacologia , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Relação Quantitativa Estrutura-Atividade
10.
Plant J ; 103(3): 1125-1139, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32344464

RESUMO

Inhibition of nodule development is one of the main adverse effects of phosphate (Pi) deficiency in legumes. Despite all of the efforts made over the last decades to understand how root nodules cope with Pi deficiency, the molecular mechanisms leading to the reduction in nodule number under Pi deficiency remain elusive. In the present study, we provide experimental evidence indicating that Pi deficiency activates the autoregulation of nodulation (AON) pathway, leading to a reduction in nodule numbers in both common bean and soybean. A transcriptional profile analysis revealed that the expression of the AON-related genes PvNIN, PvRIC1, PvRIC2, and PvTML is upregulated under Pi deficiency conditions. The downregulation of the MYB transcription factor PvPHR1 in common bean roots significantly reduced the expression of these four AON-related genes. Physiological analyses indicated that Pi deficiency does not affect the establishment of the root nodule symbiosis in the supernodulation mutant lines Pvnark and Gmnark. Reciprocal grafting and split-roots analyses determined that the activation of the AON pathway was required for the inhibitory effect of Pi deficiency. Altogether, these data improve our understanding of the genetic mechanisms controlling the establishment of the root nodule symbiosis under Pi deficiency.


Assuntos
Glycine max/metabolismo , Phaseolus/metabolismo , Fósforo/deficiência , Nodulação , Regulação da Expressão Gênica de Plantas , Fixação de Nitrogênio , Phaseolus/fisiologia , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/metabolismo , Glycine max/fisiologia , Simbiose
11.
Arch Biochem Biophys ; 680: 108229, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31870661

RESUMO

Structural disorder in proteins is a widespread feature distributed in all domains of life, particularly abundant in eukaryotes, including plants. In these organisms, intrinsically disordered proteins (IDPs) perform a diversity of functions, participating as integrators of signaling networks, in transcriptional and post-transcriptional regulation, in metabolic control, in stress responses and in the formation of biomolecular condensates by liquid-liquid phase separation. Their roles impact the perception, propagation and control of various developmental and environmental cues, as well as the plant defense against abiotic and biotic adverse conditions. In this review, we focus on primary processes to exhibit a broad perspective of the relevance of IDPs in plant cell functions. The information here might help to incorporate this knowledge into a more dynamic view of plant cells, as well as open more questions and promote new ideas for a better understanding of plant life.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Animais , Redes Reguladoras de Genes , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Transição de Fase , Transdução de Sinais , Estresse Fisiológico , Ativação Transcricional
12.
Plant Cell Environ ; 42(1): 133-144, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29626361

RESUMO

Plant microRNAs are commonly encoded in transcripts containing a single microRNA precursor. Processing by DICER-LIKE 1 and associated factors results in the production of a small RNA, followed by its incorporation into an AGO-containing protein complex to guide silencing of an mRNA possessing a complementary target sequence. Certain microRNA loci contain more than one precursor stem-loop structure, thus encoding more than one microRNA in the same transcript. Here, we describe a unique case where the evolutionary conserved miR398a is encoded in the same transcript as the legume-specific miR2119. The dicistronic arrangement found in common bean was also observed in other legumes. In Phaseolus vulgaris, mature miR398 and miR2119 are repressed in response to water deficit, and we demonstrate that both are functional as they target the mRNAs for CSD1 and ADH1, respectively. Our results indicate that the repression of miR398 and miR2119 leads to coordinated up-regulation of CSD1 and ADH1 mRNAs in response to water deficit in common bean and possibly in other legumes. Furthermore, we show that miRNA directed CSD1 and ADH1 mRNAs up-regulation also occurs when common bean plants are exposed to flooding, suggesting that plant redox status and fermentation metabolism must be closely coordinated under different adverse conditions.


Assuntos
Álcool Desidrogenase/metabolismo , MicroRNAs/metabolismo , Phaseolus/metabolismo , Proteínas de Plantas/metabolismo , Precursores de RNA/metabolismo , Superóxido Dismutase/metabolismo , Álcool Desidrogenase/genética , Desidratação , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , Phaseolus/fisiologia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase , Precursores de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Superóxido Dismutase/genética
13.
Cell Mol Life Sci ; 74(17): 3119-3147, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28643166

RESUMO

Plants are sessile organisms. This intriguing nature provokes the question of how they survive despite the continual perturbations caused by their constantly changing environment. The large amount of knowledge accumulated to date demonstrates the fascinating dynamic and plastic mechanisms, which underpin the diverse strategies selected in plants in response to the fluctuating environment. This phenotypic plasticity requires an efficient integration of external cues to their growth and developmental programs that can only be achieved through the dynamic and interactive coordination of various signaling networks. Given the versatility of intrinsic structural disorder within proteins, this feature appears as one of the leading characters of such complex functional circuits, critical for plant adaptation and survival in their wild habitats. In this review, we present information of those intrinsically disordered proteins (IDPs) from plants for which their high level of predicted structural disorder has been correlated with a particular function, or where there is experimental evidence linking this structural feature with its protein function. Using examples of plant IDPs involved in the control of cell cycle, metabolism, hormonal signaling and regulation of gene expression, development and responses to stress, we demonstrate the critical importance of IDPs throughout the life of the plant.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Criptocromos/química , Criptocromos/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/química , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
14.
J Biol Chem ; 291(20): 10893-903, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27006402

RESUMO

Late embryogenesis abundant (LEA) proteins are a conserved group of proteins widely distributed in the plant kingdom that participate in the tolerance to water deficit of different plant species. In silico analyses indicate that most LEA proteins are structurally disordered. The structural plasticity of these proteins opens the question of whether water deficit modulates their conformation and whether these possible changes are related to their function. In this work, we characterized the secondary structure of Arabidopsis group 4 LEA proteins. We found that they are disordered in aqueous solution, with high intrinsic potential to fold into α-helix. We demonstrate that complete dehydration is not required for these proteins to sample ordered structures because milder water deficit and macromolecular crowding induce high α-helix levels in vitro, suggesting that prevalent conditions under water deficit modulate their conformation. We also show that the N-terminal region, conserved across all group 4 LEA proteins, is necessary and sufficient for conformational transitions and that their protective function is confined to this region, suggesting that folding into α-helix is required for chaperone-like activity under water limitation. We propose that these proteins can exist as different conformers, favoring functional diversity, a moonlighting property arising from their structural dynamics.


Assuntos
Arabidopsis/química , Proteínas de Plantas/química , Arabidopsis/genética , Proteínas de Plantas/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
15.
J Exp Bot ; 68(8): 2013-2026, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338719

RESUMO

Recent studies have identified microRNAs as post-transcriptional regulators involved in stress responses. miR1514a is a legume microRNA that is induced in response to drought stress in Phaseolus vulgaris (common bean) and shows differential accumulation levels in roots during water deficit in two cultivars with different drought tolerance phenotypes. A recent degradome analysis revealed that miR1514a targets the transcripts of two NAC transcription factors (TFs), Phvul.010g121000 and Phvul.010g120700. Furthermore, expression studies and small RNA-seq data indicate that only Phvul.010g120700 generates phasiRNAs, which also accumulate under water deficit conditions. To confirm these results, we over-expressed miR1514a in transgenic hairy roots, and observed a reduced accumulation of Phvul.010g120700 and an increase in NAC-derived phasiRNAs; inhibition of miR1514a activity resulted in the opposite effect. Moreover, we determined that a NAC-derived phasiRNA associates with ARGONAUTE 1 (AGO1), suggesting that it is functional. In addition, a transcriptome analysis of transgenic hairy roots with reduced miR1514a levels revealed several differentially expressed transcripts, mainly involved in metabolism and stress responses, suggesting they are regulated by the NAC TF and/or by phasiRNAs. This work therefore demonstrates the participation of miR1514 in the regulation of a NAC transcription factor transcript through phasiRNA production during the plant response to water deficit.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/fisiologia , Phaseolus/genética , Phaseolus/fisiologia , Fatores de Transcrição/genética , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
16.
Cryobiology ; 73(2): 216-20, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27424093

RESUMO

The aim of this work was to evaluate the fertilization rates through the first cleavage, obtained with fresh oocytes inseminated with sperm cryopreserved at different freezing rates (-8.8,-10 and -12 °C/min) and at two thawing rates, using cryoprotectant solution (Me2SO, at 1 M, 2 M, 3 M, 4 M and 5 M with or without egg yolk and sucrose). Sperm contained in small pieces of male gonad were frozen at the three freezing rates, stored in liquid nitrogen and later the samples were thawed at two rates by immersing the samples in water at 50 °C (rapid) or 30 °C. Control fertilization rates ranged from 69.2 ± 2.8%-45.5% ± 1.6%. To determine the best concentration of the cryoprotectant (between 1 M and 5 M), in a first step, a freezing of -15 °C/min and a rapid thawing was used. Fertilization rates ranged between 9.6 ± 2.5% and 34.6± 12.2% and the highest percentages of fertilized oocytes (34.6%) was obtained with 3 M concentration with cryoaditive. The second step, using 3 M Me2SO with cryoadditive, determined that the freezing rate -8.8 °C/min produces the best result 29 ± 2.9% of fertilized oocytes corresponding to 59.2 ± 9.1% compared to controls. Although there were no significant differences among the different freezing rates, the fertilization rate tended to be higher with a lower freezing rate. Comparing the results of the present study, which used a cryoprotective solution composed of Me2SO and a cryoadditive, to those of other studies that used Me2SO without cryoadditives, suggests that the addition of a cryoadditive to the cryoprotectant Me2SO improves the fertilizing capacity of the sperm of Argopecten purpuratus after being cryopreserved.


Assuntos
Criopreservação/métodos , Fertilização in vitro/métodos , Preservação do Sêmen/métodos , Animais , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Feminino , Congelamento , Gônadas , Masculino , Pectinidae , Espermatozoides/efeitos dos fármacos
17.
J Biol Chem ; 289(46): 31995-32009, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25271167

RESUMO

Late embryogenesis-abundant proteins accumulate to high levels in dry seeds. Some of them also accumulate in response to water deficit in vegetative tissues, which leads to a remarkable association between their presence and low water availability conditions. A major sub-group of these proteins, also known as typical LEA proteins, shows high hydrophilicity and a high percentage of glycine and other small amino acid residues, distinctive physicochemical properties that predict a high content of structural disorder. Although all typical LEA proteins share these characteristics, seven groups can be distinguished by sequence similarity, indicating structural and functional diversity among them. Some of these groups have been extensively studied; however, others require a more detailed analysis to advance in their functional understanding. In this work, we report the structural characterization of a group 6 LEA protein from a common bean (Phaseolus vulgaris L.) (PvLEA6) by circular dichroism and nuclear magnetic resonance showing that it is a disordered protein in aqueous solution. Using the same techniques, we show that despite its unstructured nature, the addition of trifluoroethanol exhibited an intrinsic potential in this protein to gain helicity. This property was also promoted by high osmotic potentials or molecular crowding. Furthermore, we demonstrate that PvLEA6 protein is able to form soluble homo-oligomeric complexes that also show high levels of structural disorder. The association between PvLEA6 monomers to form dimers was shown to occur in plant cells by bimolecular fluorescence complementation, pointing to the in vivo functional relevance of this association.


Assuntos
Phaseolus/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Calorimetria , Cromatografia em Gel , Dicroísmo Circular , Reagentes de Ligações Cruzadas/química , Fluorometria , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Dados de Sequência Molecular , Concentração Osmolar , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Água/química
18.
Antioxidants (Basel) ; 13(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38790723

RESUMO

Gastric diseases represent a significant global public health challenge, characterized by molecular dysregulation in redox homeostasis and heightened oxidative stress. Although prior preclinical studies have demonstrated the cytoprotective antioxidant effects of alginate oligosaccharides (AOSs) through the Nrf2 pathway, whether such mechanisms apply to gastric diseases remains unclear. In this study, we used the GES-1 gastric cell line exposed to hydrogen peroxide (H2O2) as a damage model to investigate the impact of AOS on cell viability and its associated mechanisms. Our results revealed that pre-incubation with AOS for either 4 h or 24 h significantly improved the viability of GES-1 cells exposed to H2O2. In addition, AOS reduced the intracellular ROS levels, activating the Nrf2 signaling pathway, with increased Nrf2 protein and mRNA expression and a significant upregulation of the target genes HO-1 and NQO1. The activation of Nrf2 was correlated with decreased Keap1 protein expression and an increased level of the autophagy protein p62/SQSTM1, suggesting the activation of Nrf2 through a noncanonical pathway. This study suggests that AOS is a potential treatment for protecting gastric epithelial cells from oxidative stress by activating the p62/SQSTM1-Keap1-Nrf2 axis and laying the foundation for future investigations about its specific therapeutic mechanisms.

19.
Sci Rep ; 14(1): 2770, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307936

RESUMO

Late Embryogenesis Abundant (LEA) proteins are a group of intrinsically disordered proteins implicated in plant responses to water deficit. In vitro studies revealed that LEA proteins protect reporter enzymes from inactivation during low water availability. Group 4 LEA proteins constitute a conserved protein family, displaying in vitro protective capabilities. Under water deficiency or macromolecular crowding, the N-terminal of these proteins adopts an alpha-helix conformation. This region has been identified as responsible for the protein in vitro protective activity. This study investigates whether the attainment of alpha-helix conformation and/or particular amino acid residues are required for the in vitro protective activity. The LEA4-5 protein from Arabidopsis thaliana was used to generate mutant proteins. The mutations altered conserved residues, deleted specific conserved regions, or introduced prolines to hinder alpha-helix formation. The results indicate that conserved residues are not essential for LEA4-5 protective function. Interestingly, the C-terminal region was found to contribute to this function. Moreover, alpha-helix conformation is necessary for the protective activity only when the C-terminal region is deleted. Overall, LEA4-5 shows the ability to adopt alternative functional conformations under the tested conditions. These findings shed light on the in vitro mechanisms by which LEA proteins protect against water deficit stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Água/metabolismo , Desenvolvimento Embrionário
20.
J Cell Biochem ; 114(7): 1653-64, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23386391

RESUMO

Glycogen is the main source of glucose for many biological events. However, this molecule may have other functions, including those that have deleterious effects on cells. The rate-limiting enzyme in glycogen synthesis is glycogen synthase (GS). It is encoded by two genes, GYS1, expressed in muscle (muscle glycogen synthase, MGS) and other tissues, and GYS2, primarily expressed in liver (liver glycogen synthase, LGS). Expression of GS and its activity have been widely studied in many tissues. To date, it is not clear which GS isoform is responsible for glycogen synthesis and the role of glycogen in testis. Using RT-PCR, Western blot and immunofluorescence, we have detected expression of MGS but not LGS in mice testis during development. We have also evaluated GS activity and glycogen storage at different days after birth and we show that both GS activity and levels of glycogen are higher during the first days of development. Using RT-PCR, we have also shown that malin and laforin are expressed in testis, key enzymes for regulation of GS activity. These proteins form an active complex that regulates MGS by poly-ubiquitination in both Sertoli cell and male germ cell lines. In addition, PTG overexpression in male germ cell line triggered apoptosis by caspase3 activation, proposing a proapoptotic role of glycogen in testis. These findings suggest that GS activity and glycogen synthesis in testis could be regulated and a disruption of this process may be responsible for the apoptosis and degeneration of seminiferous tubules and possible cause of infertility.


Assuntos
Células Germinativas/citologia , Células Germinativas/metabolismo , Glicogênio Sintase/metabolismo , Glicogênio/metabolismo , Isoformas de Proteínas/metabolismo , Testículo/citologia , Testículo/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Glicogênio Sintase/genética , Immunoblotting , Masculino , Camundongos , Camundongos Transgênicos , Isoformas de Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Túbulos Seminíferos/citologia , Túbulos Seminíferos/metabolismo , Testículo/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA