Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 18(1): 521, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28693474

RESUMO

BACKGROUND: Metagenomics allows unprecedented access to uncultured environmental microorganisms. The analysis of metagenomic sequences facilitates gene prediction and annotation, and enables the assembly of draft genomes, including uncultured members of a community. However, while several platforms have been developed for this critical step, there is currently no clear framework for the assembly of metagenomic sequence data. RESULTS: To assist with selection of an appropriate metagenome assembler we evaluated the capabilities of nine prominent assembly tools on nine publicly-available environmental metagenomes, as well as three simulated datasets. Overall, we found that SPAdes provided the largest contigs and highest N50 values across 6 of the 9 environmental datasets, followed by MEGAHIT and metaSPAdes. MEGAHIT emerged as a computationally inexpensive alternative to SPAdes, assembling the most complex dataset using less than 500 GB of RAM and within 10 hours. CONCLUSIONS: We found that assembler choice ultimately depends on the scientific question, the available resources and the bioinformatic competence of the researcher. We provide a concise workflow for the selection of the best assembly tool.


Assuntos
Metagenômica/métodos , Benchmarking , Bases de Dados Genéticas , Meio Ambiente
2.
Arch Virol ; 160(9): 2269-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26123922

RESUMO

The study of extremophilic phages may reveal new phage families as well as different mechanisms of infection, propagation and lysis to those found in phages from temperate environments. We describe a novel siphovirus, GVE3, which infects the thermophile Geobacillus thermoglucosidasius. The genome size is 141,298 bp (G+C 29.6%), making it the largest Geobacillus spp-infecting phage known. GVE3 appears to be most closely related to the recently described Bacillus anthracis phage vB_BanS_Tsamsa, rather than Geobacillus-infecting phages described thus far. Tetranucleotide usage deviation analysis supports this relationship, showing that the GVE3 genome sequence correlates best with B. anthracis and Bacillus cereus genome sequences, rather than Geobacillus spp genome sequences.


Assuntos
Fagos Bacilares/classificação , Fagos Bacilares/isolamento & purificação , DNA Viral/química , Geobacillus/virologia , Siphoviridae/classificação , Siphoviridae/isolamento & purificação , Fagos Bacilares/genética , Fagos Bacilares/ultraestrutura , Bacillus anthracis/genética , Bacillus anthracis/virologia , Bacillus cereus/genética , Bacillus cereus/virologia , Composição de Bases , Análise por Conglomerados , DNA Viral/genética , Ordem dos Genes , Genoma Viral , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência , Siphoviridae/genética , Siphoviridae/ultraestrutura , Vírion/ultraestrutura
3.
J Genomics ; 6: 20-23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29483968

RESUMO

The thermophilic 'Geobacilli' are important sources of thermostable enzymes and other biotechnologically relevant macromolecules. The present work reports the high quality draft genome sequences of previously unsequenced type strains of Geobacillus uzenensis (DSM 23175T), G. thermocatenulatus (DSM 730T) and Parageobacillus galactosidasius (DSM 18751T). Phylogenomic analyses revealed that DSM 18751T and DSM 23175T represent later heterotypic synonyms of P. toebii and G. subterraneus, respectively, while DSM 730T represents the type strain for the species G. thermocatenulatus. These genome sequences will contribute towards a deeper understanding of the ecological and biological diversity and the biotechnological exploitation of the 'geobacilli'.

4.
Curr Opin Biotechnol ; 38: 159-66, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26921734

RESUMO

Global change is disproportionately affecting cold environments (polar and high elevation regions), with potentially negative impacts on microbial diversity and functional processes. In most cold environments the combination of low temperatures, and physical stressors, such as katabatic wind episodes and limited water availability result in biotic systems, which are in trophic terms very simple and primarily driven by microbial communities. Metagenomic approaches have provided key insights on microbial communities in these systems and how they may adapt to stressors and contribute towards mediating crucial biogeochemical cycles. Here we review, the current knowledge regarding edaphic-based microbial diversity and functional processes in Antarctica, and the Artic. Such insights are crucial and help to establish a baseline for understanding the impact of climate change on Polar Regions.


Assuntos
Bactérias , Microbiologia do Solo , Solo , Regiões Árticas , Bactérias/metabolismo , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA