Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Anat ; 240(2): 210-225, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34569054

RESUMO

European and American minks (Mustela lutreola and Neovison vison, respectively) are very similar in their ecology, behavior, and morphology. However, the American mink is a generalist predator and seems to adapt better to anthropized environments, allowing it to outcompete the European mink in areas where it has been introduced, threatening the survival of the native species. To assess whether morphological differences may be contributing to the success of the American mink relative to the European mink, we analyzed shape variation in the cranium of both species using 3D geometric morphometrics. A set of 38 landmarks and 107 semilandmarks was used to study shape variation between and within species, and to assess how differences in size factored into that variation. Sexual dimorphism in both size and shape was also studied. Significant differences between species were found in cranial shape, but not in size. Relative to American mink, European mink have a shorter facial region with a rounder forehead and wider orbits, a longer neurocranium with less developed crests and processes, and an antero-medially placed tympanic bullae with an anteriorly expanded cranial border. Within species, size-related sexual dimorphism is highly significant, but sexual dimorphism in shape is only significant in American mink, not in European mink. Additionally, two trends common to both species were discovered, one related to allometric changes and another to sexual size dimorphism. Shape changes related to increasing size can be subdivided into two, probably related, groups: increased muscle force and growth. The first group somewhat parallels the differences between both mink species, while the second group of traits includes an anterodorsal expansion of the face, and the neurocranium shifting from a globous shape in small individuals to a dorsoventrally flattened ellipse in the largest ones. Finally, the sexual dimorphism trend, while also accounting for differences in muscle force, seems to be related to the observed dietary differences between males and females. Overall, differences between species and sexes, and shape changes with increasing size, seem to mainly relate to differences in masticatory-muscle volume and therefore muscle force and bite force, which, in turn, relate to a wider range of potential prey (bigger prey, tougher shells). Thus, muscle force (and dietary range) would be larger in American mink than in European mink, in males than in females, and in larger individuals than in smaller ones.


Assuntos
Vison , Crânio , Animais , Força de Mordida , Feminino , Cabeça/anatomia & histologia , Humanos , Masculino , Caracteres Sexuais , Crânio/anatomia & histologia
2.
Proc Biol Sci ; 288(1945): 20202809, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33593183

RESUMO

Biomechanical modelling is a powerful tool for quantifying the evolution of functional performance in extinct animals to understand key anatomical innovations and selective pressures driving major evolutionary radiations. However, the fossil record is composed predominantly of hard parts, forcing palaeontologists to reconstruct soft tissue properties in such models. Rarely are these reconstruction approaches validated on extant animals, despite soft tissue properties being highly determinant of functional performance. The extent to which soft tissue reconstructions and biomechanical models accurately predict quantitative or even qualitative patterns in macroevolutionary studies is therefore unknown. Here, we modelled the masticatory system in extant rodents to objectively test the ability of current muscle reconstruction methods to correctly identify quantitative and qualitative differences between macroevolutionary morphotypes. Baseline models generated using measured soft tissue properties yielded differences in muscle proportions, bite force, and bone stress expected between extant sciuromorph, myomorph, and hystricomorph rodents. However, predictions from models generated using reconstruction methods typically used in fossil studies varied widely from high levels of quantitative accuracy to a failure to correctly capture even relative differences between macroevolutionary morphotypes. Our novel experiment emphasizes that correctly reconstructing even qualitative differences between taxa in a macroevolutionary radiation is challenging using current methods. Future studies of fossil taxa should incorporate systematic assessments of reconstruction error into their hypothesis testing and, moreover, seek to expand primary datasets on muscle properties in extant taxa to better inform soft tissue reconstructions in macroevolutionary studies.


Assuntos
Força de Mordida , Fósseis , Animais , Evolução Biológica , Fenômenos Biomecânicos , Biofísica
3.
Proc Biol Sci ; 287(1938): 20202085, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33143584

RESUMO

Insular gigantism-evolutionary increases in body size from small-bodied mainland ancestors-is a conceptually significant, but poorly studied, evolutionary phenomenon. Gigantism is widespread on Mediterranean islands, particularly among fossil and extant dormice. These include an extant giant population of Eliomys quercinus on Formentera, the giant Balearic genus †Hypnomys and the exceptionally large †Leithia melitensis of Pleistocene Sicily. We quantified patterns of cranial and mandibular shape and their relationships to head size (allometry) among mainland and insular dormouse populations, asking to what extent the morphology of island giants is explained by allometry. We find that gigantism in dormice is not simply an extrapolation of the allometric trajectory of their mainland relatives. Instead, a large portion of their distinctive cranial and mandibular morphology resulted from the population- or species-specific evolutionary shape changes. Our findings suggest that body size increases in insular giant dormice were accompanied by the evolutionary divergence of feeding adaptations. This complements other evidence of ecological divergence in these taxa, which span predominantly faunivorous to herbivorous diets. Our findings suggest that insular gigantism involves context-dependent phenotypic modifications, underscoring the highly distinctive nature of island faunas.


Assuntos
Evolução Biológica , Myoxidae/fisiologia , Adaptação Fisiológica , Animais , Tamanho Corporal , Fósseis
4.
Biol Lett ; 14(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30068543

RESUMO

Convergence-the independent evolution of similar phenotypes in distantly related clades-is a widespread and much-studied phenomenon. An often-cited, but hitherto untested, case of morphological convergence is that between the aye-aye and squirrels. The aye-aye (Daubentonia madagascariensis) is a highly unusual lemuriform primate that has evolved a dentition similar to that of rodents: it possesses large, ever-growing incisors which it uses to strip the bark from trees in order to feed on wood-boring beetle larvae. Indeed, such is the similarity that some of the earliest classifications of the aye-aye placed it in the squirrel genus Sciurus Here, we aimed to test the degree of convergence between the skulls and lower jaws of squirrels and the aye-aye. Three-dimensional landmarks were recorded from the crania and mandibles of 46 taxa representing the majority of families in the Euarchontoglires. Results were plotted as phylomorphospaces and convergence measures were calculated. The convergence between squirrels and the aye-aye was shown to be statistically significant for both the cranium and mandible, although the mandibles seem to converge more closely in shape. The convergence may indicate strong functional drivers of morphology in these taxa, i.e. the use of the incisors to produce high bite forces during feeding. Overall, we have shown that this classic case of convergence stands up to quantitative analysis.


Assuntos
Comportamento Alimentar/fisiologia , Filogenia , Strepsirhini/anatomia & histologia , Strepsirhini/classificação , Animais , Besouros , Larva , Mandíbula/anatomia & histologia , Sciuridae/anatomia & histologia , Sciuridae/classificação , Crânio/anatomia & histologia
5.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28404779

RESUMO

Over the past two decades, the development of methods for visualizing and analysing specimens digitally, in three and even four dimensions, has transformed the study of living and fossil organisms. However, the initial promise that the widespread application of such methods would facilitate access to the underlying digital data has not been fully achieved. The underlying datasets for many published studies are not readily or freely available, introducing a barrier to verification and reproducibility, and the reuse of data. There is no current agreement or policy on the amount and type of data that should be made available alongside studies that use, and in some cases are wholly reliant on, digital morphology. Here, we propose a set of recommendations for minimum standards and additional best practice for three-dimensional digital data publication, and review the issues around data storage, management and accessibility.


Assuntos
Curadoria de Dados/normas , Conjuntos de Dados como Assunto , Disciplinas das Ciências Biológicas/estatística & dados numéricos , Reprodutibilidade dos Testes , Pesquisa/normas
7.
J Anat ; 228(6): 889-909, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26970556

RESUMO

Morphologists have historically had to rely on destructive procedures to visualize the three-dimensional (3-D) anatomy of animals. More recently, however, non-destructive techniques have come to the forefront. These include X-ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard-tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT-based research is the use of chemical agents to render visible, and differentiate between, soft-tissue structures in X-ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine-based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine-based, contrast-enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting-edge applications of diffusible iodine-based contrast-enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward.


Assuntos
Anatomia Comparada/métodos , Meios de Contraste , Imageamento Tridimensional , Iodetos , Tomografia Computadorizada por Raios X , Animais
8.
J Anat ; 226(3): 215-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25652795

RESUMO

Josephoartigasia monesi, from the Pliocene of Uruguay, is the largest known fossil rodent, with an estimated body mass of 1000 kg. In this study, finite element analysis was used to estimate the maximum bite force that J. monesi could generate at the incisors and the cheek teeth. Owing to uncertainty in the model inputs, a sensitivity study was conducted in which the muscle forces and orientations were sequentially altered. This enabled conclusions to be drawn on the function of some of the masticatory muscles. It was found that J. monesi had a bite of 1389 N at the incisors, rising to 4165 N at the third molar. Varying muscle forces by 20% and orientations by 10° around the medio-lateral aspect led to an error in bite force of under 35% at each tooth. Predicted stresses across the skull were only minimally affected by changes to muscle forces and orientations, but revealed a reasonable safety factor in the strength of the skull. These results, combined with previous work, lead us to speculate that J. monesi was behaving in an elephant-like manner, using its incisors like tusks, and processing tough vegetation with large bite forces at the cheek teeth.


Assuntos
Força de Mordida , Análise de Elementos Finitos , Roedores/fisiologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Fósseis , Incisivo/fisiologia , Mastigação/fisiologia , Músculos da Mastigação/fisiologia , Modelos Animais , Modelos Biológicos , Dente Molar/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Roedores/anatomia & histologia , Crânio/anatomia & histologia , Estresse Mecânico
9.
R Soc Open Sci ; 10(2): 220587, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36816846

RESUMO

The process of feeding in mammals is achieved by moving the mandible relative to the cranium to bring the teeth into and out of occlusion. This process is especially complex in rodents which have a highly specialized configuration of jaw adductor muscles. Here, we used the computational technique of multi-body dynamics analysis (MDA) to model feeding in the red (Sciurus vulgaris) and grey squirrel (Sciurus carolinensis) and determine the relative contribution of each jaw-closing muscle in the generation of bite forces. The MDA model simulated incisor biting at different gapes. A series of 'virtual ablation experiments' were performed at each gape, whereby the activation of each bilateral pair of muscles was set to zero. The maximum bite force was found to increase at wider gapes. As predicted, the superficial and anterior deep masseter were the largest contributors to bite force, but the temporalis had only a small contribution. Further analysis indicated that the temporalis may play a more important role in jaw stabilization than in the generation of bite force. This study demonstrated the ability of MDA to elucidate details of red and grey squirrel feeding biomechanics providing a complement to data gathered via in vivo experimentation.

10.
Evolution ; 77(6): 1303-1314, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36881990

RESUMO

Insular gigantism is an evolutionary phenomenon whereby small animals become bigger on islands compared to their mainland relatives. The abundance of insular giant taxa in the fossil record suggests the presence of a universal "giant niche" present on islands, with resource limitation as a potential driver for this process. However, insular habitats are ecologically diverse, suggesting that island taxa adopt different survival strategies, including adaptations for foraging behaviors. Here, we used finite element analysis to evaluate insular feeding niche adaptations in some of the most extreme examples of insular gigantism: Mediterranean giant dormice. We calculated stress, strain, and mechanical advantage during incisor and molar biting for 3 extinct insular giant species (Leithia melitensis, Hypnomys morpheus, and H. onicensis), an extant giant (Eliomys quercinus ophiusae), and their extant non-giant mainland relative, the generalist-feeder Eliomys quercinus. Our results show that dietary adaptations vary between giant taxa on different islands, and can occur relatively rapidly. Furthermore, the functional mandibular morphology in some insular taxa indicate adaptations moving away from a generalist feeding strategy toward greater trophic specialization. We show that the "insular giant niche" varies between islands and across time periods, arguing against a universal ecological driver for insular gigantism in small mammals.


Assuntos
Gigantismo , Animais , Tamanho Corporal , Fenômenos Biomecânicos , Evolução Biológica , Ecossistema , Mamíferos
11.
Philos Trans R Soc Lond B Biol Sci ; 378(1880): 20220087, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37183896

RESUMO

Glires (rodents, lagomorphs and their fossil kin) is the most speciose and arguably most diversified clade of living placentals. Different lineages within the Glires evolved basically opposite chewing movements: a mostly transversal power stroke in lagomorphs, and a mostly proal power stroke in rodents, but the ancestral condition for Glires is still unclear. To address this knowledge gap, we studied the mandibles of Chinese Palaeocene Glires representing the duplicidentate (lagomorph-like; Mimotona) and simplicidentate (rodent-like; Eomylus and Heomys) lineages. To assess the mechanical resistance of mandibles to bending and torsion, we calculated the section modulus. The dentaries differ greatly in morphology and the region where the maximum grinding force was likely applied. The early Palaeocene Mimotona lii and the middle Palaeocene Mimotona robusta and Heomys orientalis all show a pattern of increasing strength moving posteriorly along the mandible, similar to sciurids and the mountain beaver. By contrast, the late Palaeocene Eomylus sp. mandible was strongest in the m1 region, a pattern seen in lagomorphs and the stem placental Zofialestes. Our results indicate the early diversification of mandible structure of Glires, demonstrate a mixture of duplicidentate and simplicidentate characters among the basal Glires and suggest an early occurrence of a lagomorph-like morphotype. This article is part of the theme issue 'The mammalian skull: development, structure and function'.


Assuntos
Lagomorpha , Gravidez , Animais , Feminino , Lagomorpha/anatomia & histologia , Roedores , Filogenia , Placenta , Mamíferos , Mandíbula , Sciuridae
12.
Sci Rep ; 12(1): 4997, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322070

RESUMO

European and American minks are very similar in ecology, behavior and morphology. Both species hunt terrestrial vertebrates and aquatic prey, but the American mink is a more generalist predator which, among other factors, allows it to outcompete the European mink in areas where it has been introduced. We used 3D geometric morphometrics and estimates of muscle mechanical advantage to assess the degree of variation in mandibular morphology, and to determine whether such variation reflects dietary differences between the two species. The three main axes of variation represented interspecific differences, a common allometric trajectory between species and sexes, and the interspecific effect of sexual size dimorphism, with males having overall stronger bites than females. Differences in mandible shape and biomechanical parameters suggest that American minks are better equipped for preying on terrestrial vertebrates, while the features seen in European mink could be related to tougher prey, fish capture, or both. Additionally, within each species, the larger specimens of each sex present indicators of a higher percentage of terrestrial prey in their diet. These results indicate a low potential dietary overlap between both species, suggesting that factors other than prey competition may have a role in the decline of the European mink.


Assuntos
Vison , Crânio , Animais , Fenômenos Biomecânicos , Feminino , Cabeça , Masculino , Mandíbula/anatomia & histologia , Crânio/anatomia & histologia
13.
Sci Rep ; 12(1): 3819, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264608

RESUMO

Rodents are characterised by a distinctive masticatory apparatus which includes a single pair of enlarged and continually growing incisors. This morphology, termed diprotodonty, has also independently evolved in a number of other mammals, including the aye-aye. This study examined the functional significance of the internal "root" of the elongated rodent-like incisor. The mandibles of four rodents and an aye-aye were modelled to exhibit incrementally shorter incisor roots. Finite element analysis was used to predict stress and strain patterns across the jaw to determine whether the length of the incisor root contributes to the resistance of mechanical forces encountered in the mandible during incision. It was found that von Mises stresses increase in the region of the mandible local to where the incisor is removed, but that the stress distribution across the wider mandible is only minimally affected. Thus, the long internal incisor appears to play a small role in resisting bending forces close to the incisor alveolus, and may act with the arch-like mandibular shape to strengthen the mandible in this region. However, the impact across the whole mandible is relatively limited, suggesting the highly elongate incisor in diprotodont mammals may be principally driven by other factors such as rapid incisor wear.


Assuntos
Incisivo , Roedores , Animais , Análise de Elementos Finitos , Incisivo/anatomia & histologia , Mandíbula/anatomia & histologia , Mandíbula/cirurgia , Roedores/anatomia & histologia , Raiz Dentária
14.
PeerJ ; 10: e14414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518283

RESUMO

Background: The leporid lagomorphs (rabbits and hares) are adapted to running and leaping (some more than others) and consequently have unique anatomical features that distinguish them from ochotonid lagomorphs (pikas) and from their rodent relatives. Two traits that have received some attention are fenestration of the lateral wall of the maxilla and facial tilting. These features are known to correlate with specialised locomotory form in that the faster running species will generally have fenestration that occupies the dorsal and the anteroventral surface of the maxillary corpus and a more acute facial tilt angle. Another feature is an intracranial joint that circumscribes the back of the skull, thought to facilitate skull mobility. This joint separates the anterior portion of the cranium (including the dentition, rostrum and orbit) from the posterior portion of the cranium (which encompasses the occipital and the auditory complex). Aside from the observation that the intracranial joint is absent in pikas (generalist locomotors) and appears more elaborate in genera with cursorial and saltatorial locomotory habits, the evolutionary history, biomechanical function and comparative anatomy of this feature in leporids lacks a comprehensive evaluation. Methodology: The present work analysed the intracranial joint, facial tilting and lateral fenestration of the wall of the maxilla in the context of leporid evolutionary history using a Bayesian inference of phylogeny (18 genera, 23 species) and ancestral state reconstruction. These methods were used to gather information about the likelihood of the presence of these three traits in ancestral groups. Results: Our phylogenetic analyses found it likely that the last common ancestor of living leporids had some facial tilting, but that the last common ancestor of all lagomorphs included in the dataset did not. We found that it was likely that the last common ancestor of living leporids had fenestration that occupies the dorsal, but not the anteroventral, surface of the maxillary corpus. We also found it likely that the last common ancestor of living leporids had an intracranial joint, but that the last common ancestor of all living lagomorphs did not. These findings provide a broader context to further studies of evolutionary history and will help inform the formulation and testing of functional hypotheses.


Assuntos
Lebres , Lagomorpha , Animais , Coelhos , Lagomorpha/anatomia & histologia , Filogenia , Teorema de Bayes , Crânio/diagnóstico por imagem
15.
Nat Commun ; 13(1): 4340, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896591

RESUMO

Body size and shape play fundamental roles in organismal function and it is expected that animals may possess body proportions that are well-suited to their ecological niche. Tetrapods exhibit a diverse array of body shapes, but to date this diversity in body proportions and its relationship to ecology have not been systematically quantified. Using whole-body skeletal models of 410 extinct and extant tetrapods, we show that allometric relationships vary across individual body segments thereby yielding changes in overall body shape as size increases. However, we also find statistical support for quadratic relationships indicative of differential scaling in small-medium versus large animals. Comparisons of locomotor and dietary groups highlight key differences in body proportions that may mechanistically underlie occupation of major ecological niches. Our results emphasise the pivotal role of body proportions in the broad-scale ecological diversity of tetrapods.


Assuntos
Evolução Biológica , Ecologia , Animais , Tamanho Corporal
16.
PeerJ Comput Sci ; 7: e542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084938

RESUMO

This paper proposes a computational framework for automated, landmark-free hypothesis testing of 2D contour shapes (i.e., shape outlines), and implements one realization of that framework. The proposed framework consists of point set registration, point correspondence determination, and parametric full-shape hypothesis testing. The results are calculated quickly (<2 s), yield morphologically rich detail in an easy-to-understand visualization, and are complimented by parametrically (or nonparametrically) calculated probability values. These probability values represent the likelihood that, in the absence of a true shape effect, smooth, random Gaussian shape changes would yield an effect as large as the observed one. This proposed framework nevertheless possesses a number of limitations, including sensitivity to algorithm parameters. As a number of algorithms and algorithm parameters could be substituted at each stage in the proposed data processing chain, sensitivity analysis would be necessary for robust statistical conclusions. In this paper, the proposed technique is applied to nine public datasets using a two-sample design, and an ANCOVA design is then applied to a synthetic dataset to demonstrate how the proposed method generalizes to the family of classical hypothesis tests. Extension to the analysis of 3D shapes is discussed.

17.
J R Soc Interface ; 18(180): 20210324, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34283941

RESUMO

Measures of attachment or accommodation area on the skeleton are a popular means of rapidly generating estimates of muscle proportions and functional performance for use in large-scale macroevolutionary studies. Herein, we provide the first evaluation of the accuracy of these muscle area assessment (MAA) techniques for estimating muscle proportions, force outputs and bone loading in a comparative macroevolutionary context using the rodent masticatory system as a case study. We find that MAA approaches perform poorly, yielding large absolute errors in muscle properties, bite force and particularly bone stress. Perhaps more fundamentally, these methods regularly fail to correctly capture many qualitative differences between rodent morphotypes, particularly in stress patterns in finite-element models. Our findings cast doubts on the validity of these approaches as means to provide input data for biomechanical models applied to understand functional transitions in the fossil record, and perhaps even in taxon-rich statistical models that examine broad-scale macroevolutionary patterns. We suggest that future work should go back to the bones to test if correlations between attachment area and muscle size within homologous muscles across a large number of species yield strong predictive relationships that could be used to deliver more accurate predictions for macroevolutionary and functional studies.


Assuntos
Força de Mordida , Fósseis , Fenômenos Biomecânicos , Modelos Biológicos , Músculos , Crânio/anatomia & histologia
18.
J Anat ; 216(1): 37-47, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20002227

RESUMO

The semicircular canals of the inner ear sense angular accelerations and decelerations of the head and enable co-ordination of posture and body movement, as well as visual stability. Differences of agility and spatial sensitivity among species have been linked to interspecific differences in the relative size of the canals, particularly the radius of curvature (R) and the ratio of the canal plane area to streamline length (P/L). Here we investigate the scaling relationships of these two size variables and also out-of-plane torsion in the three semicircular canals (anterior, posterior and lateral), in order to assess which is more closely correlated with body size and locomotor agility. Measurements were computed from 3D landmarks taken from magnetic resonance images of a diverse sample of placental mammals encompassing 16 eutherian orders. Body masses were collected from the literature and an agility score was assigned to each species. The R and P/L of all three semicircular canals were found to have highly significant positive correlations with each other and no statistical difference was found between the slope of 2P/L against R and 1. This indicated that, contrary to initial hypotheses, there is little difference between 2P/L and R as measures of semicircular canal size. A measure of the in-plane circularity of the canal was obtained by dividing 2P/L by R and out-of-plane torsion was measured as angular deviation from a plane of best fit. It was predicted that deviations from in-plane and out-of-plane circularity would increase at small body size due to the constraints of fitting a proportionately larger canal into a smaller petrous bone. However, neither measurement was found to have a significant correlation with body mass, indicating that deviations from circularity (both in-plane and out-of-plane) are not sufficient to alter P/L to an extent that would impact the sensitivity of the canals. 2P/L and R were both shown to be significantly correlated with locomotor agility. The posterior canal was the least correlated with agility, suggesting that it may be generally less closely aligned to the direction of movement than the anterior canal. Of the three canals, the lateral canal was the most highly correlated with agility. In particular, it could be used to distinguish between species that move in a largely 2D environment and those that locomote in 3D space (aerial, arboreal and aquatic species). This complements previous work suggesting that the lateral canal primarily commands navigation, whereas the vertical canals control reflex adjustments. It was also found that 2P/L is substantially better correlated with agility than is R in the lateral canal. This result is intriguing given the above finding that there is no statistical difference between 2P/L and R, and requires further investigation.


Assuntos
Mamíferos/anatomia & histologia , Atividade Motora/fisiologia , Canais Semicirculares/anatomia & histologia , Animais , Índice de Massa Corporal , Imageamento por Ressonância Magnética/métodos , Mamíferos/classificação , Filogenia , Canais Semicirculares/fisiologia , Especificidade da Espécie , Torção Mecânica
19.
J Anat ; 216(4): 496-509, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20210819

RESUMO

The spatial arrangement of the semicircular canals and extraocular muscles of the eye has been of considerable interest, particularly to researchers working on adaptations of the vestibulo-ocular reflex. Here we offer the first, extensive comparative analysis of the spatial relationships between each extraocular muscle and the canal providing its primary excitatory stimulus. The sample consisted of 113 specimens, representing 51 extant mammalian species. Hypotheses tested included that variations in the spatial alignments are linked with differences of skull morphology and with differences of agility during locomotion. Internal morphologies were visualized with magnetic resonance imaging and were measured with landmark-based vectors and planes. Values for body mass and agility were taken from the existing literature. Data were investigated for trends and associations with standard bivariate and multivariate statistical methods as well as with phylogenetically adjusted bivariate methods. The findings clearly show that species differences in the alignment of each extraocular muscle relative to the canal providing its primary excitatory stimulus are closely associated with changes of orbit morphology. The results also indicate that the actions of the oblique muscles interchange with those of the superior and inferior recti muscles when comparing lateral-eyed (rabbit) with frontal-eyed species (cat). There was only weak evidence to support the notion that canal-muscle alignments differ significantly among species according to how agile they are. The results suggest that semicircular canal morphology is arranged primarily for detecting head movements and then secondarily, if at all, for diminishing the burden of transforming vestibulo-ocular reflex signals in the most agile species.


Assuntos
Olho/anatomia & histologia , Atividade Motora/fisiologia , Músculos Oculomotores/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Canais Semicirculares/anatomia & histologia , Crânio/anatomia & histologia , Animais , Gatos , Humanos , Locomoção/fisiologia , Músculos Oculomotores/anatomia & histologia , Coelhos , Canais Semicirculares/fisiologia , Crânio/fisiologia , Estatística como Assunto
20.
PeerJ ; 8: e8847, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231887

RESUMO

The Bathyergidae, commonly known as blesmols or African mole-rats, is a family of rodents well-known for their subterranean lifestyle and tunnelling behaviour. Four of the five extant bathyergid genera (Cryptomys, Fukomys, Georychus and Heliophobius) are chisel-tooth diggers, that is they dig through soil with their enlarged incisors, whereas the remaining genus (Bathyergus) is a scratch-digger, only using its forelimbs for burrowing. Heterocephalus glaber, the naked mole-rat, is also a chisel-tooth digger and was until recently included within the Bathyergidae (as the most basally branching genus), but has now been placed by some researchers into its own family, the Heterocephalidae. Given the importance of the masticatory apparatus in habitat construction in this group, knowledge and understanding of the morphology and arrangement of the jaw-closing muscles in Bathyergidae is vital for future functional analyses. Here, we use diffusible iodine-based contrast-enhanced microCT to reveal and describe the muscles of mastication in representative specimens of each genus of bathyergid mole-rat and to compare them to the previously described musculature of the naked mole-rat. In all bathyergids, as in all rodents, the masseter muscle is the most dominant component of the masticatory musculature. However, the temporalis is also a relatively large muscle, a condition normally associated with sciuromorphous rodents. Unlike their hystricomorphous relatives, the bathyergids do not show an extension of the masseter through the infraorbital foramen on to the rostrum (other than a very slight protrusion in Cryptomys and Fukomys). Thus, morphologically, bathyergids are protrogomorphous, although this is thought to be secondarily derived rather than retained from ancestral rodents. Overall, the relative proportions of the jaw-closing muscles were found to be fairly consistent between genera except in Bathyergus, which was found to have an enlarged superficial masseter and relatively smaller pterygoid muscles. It is concluded that these differences may be a reflection of the behaviour of Bathyergus which, uniquely in the family, does not use its incisors for digging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA