Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Cell Biol ; 8(11): 1263-9, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17041589

RESUMO

Ypt-Rab GTPases are key regulators of the various steps of intracellular trafficking. Guanine nucleotide-exchange factors (GEFs) regulate the conversion of Ypt-Rabs to the GTP-bound state, in which they interact with effectors that mediate all the known aspects of vesicular transport. An interesting possibility is that Ypt-Rabs coordinate separate steps of the transport pathways. The conserved modular complex TRAPP is a GEF for the Golgi gatekeepers Ypt1 and Ypt31/32 (Refs 5-7). However, it is not known how Golgi entry and exit are coordinated. TRAPP comes in two configurations: the seven-subunit TRAPPI is required for endoplasmic reticulum-to-Golgi transport, whereas the ten-subunit TRAPPII functions in late Golgi. The two essential TRAPPII-specific subunits Trs120 and Trs130 have been identified as Ypt31/32 genetic interactors. Here, we show that they are required for switching the GEF specificity of TRAPP from Ypt1 to Ypt31. Moreover, a trs130ts mutation confers opposite effects on the intracellular localization of these GTPases. We suggest that the Trs120-Trs130 subcomplex joins TRAPP in the late Golgi to switch its GEF activity from Ypt1 to Ypt31/32. Such a 'switchable' GEF could ensure sequential activation of these Ypts, thereby coordinating Golgi entry and exit.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Transporte Biológico , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Guanosina Difosfato/metabolismo , Proteínas de Membrana/genética , Microscopia de Fluorescência , Modelos Biológicos , Mutação/genética , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Qc-SNARE/genética , Proteínas Qc-SNARE/metabolismo , Proteínas SNARE , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética
2.
BMC Evol Biol ; 7: 12, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17274825

RESUMO

BACKGROUND: Ypt/Rab GTPases and their GEF activators regulate intra-cellular trafficking in all eukaryotic cells. In S. cerivisiae, the modular TRAPP complex acts as a GEF for the Golgi gatekeepers: Ypt1 and the functional pair Ypt31/32. While TRAPPI, which acts in early Golgi, is conserved from fungi to animals, not much is known about TRAPPII, which acts in late Golgi and consists of TRAPPI plus three additional subunits. RESULTS: Here, we show a phylogenetic analysis of the three TRAPPII-specific subunits. One copy of each of the two essential subunits, Trs120 and Trs130, is present in almost every fully sequenced eukaryotic genome. Moreover, the primary, as well as the predicted secondary, structure of the Trs120- and Trs130-related sequences are conserved from fungi to animals. The mammalian orthologs of Trs120 and Trs130, NIBP and TMEM1, respectively, are candidates for human disorders. Currently, NIBP is implicated in signaling, and TMEM1 is suggested to have trans-membrane domains (TMDs) and to function as a membrane channel. However, we show here that the yeast Trs130 does not function as a trans-membrane protein, and the human TMEM1 does not contain putative TMDs. The non-essential subunit, Trs65, is conserved only among many fungi and some unicellular eukaryotes. Multiple alignment analysis of each TRAPPII-specific subunit revealed conserved domains that include highly conserved amino acids. CONCLUSION: We suggest that the function of both NIBP and TMEM1 in the regulation of intra-cellular trafficking is conserved from yeast to man. The conserved domains and amino acids discovered here can be used for functional analysis that should help to resolve the differences in the assigned functions of these proteins in fungi and animals.


Assuntos
Proteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Humanos , Mamíferos , Proteínas de Membrana/metabolismo , Filogenia , Estrutura Secundária de Proteína , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
3.
Mol Biol Cell ; 15(4): 1487-505, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14742722

RESUMO

The eukaryotic family of ADP-ribosylation factor (Arf) GTPases plays a key role in the regulation of protein trafficking, and guanine-nucleotide exchange is crucial for Arf function. Exchange is stimulated by members of another family of proteins characterized by a 200-amino acid Sec7 domain, which alone is sufficient to catalyze exchange on Arf. Here, we analyzed the phylogeny of Sec7-domain-containing proteins in seven model organisms, representing fungi, plants, and animals. The phylogenetic tree has seven main groups, of which two include members from all seven model systems. Three groups are specific for animals, whereas two are specific for fungi. Based on this grouping, we propose a phylogenetically consistent set of names for members of the Sec7-domain family. Each group, except for one, contains proteins with known Arf exchange activity, implying that all members of this family have this activity. Contrary to the current convention, the sensitivity of Arf exchange activity to the inhibitor brefeldin A probably cannot be predicted by group membership. Multiple alignment reveals group-specific domains outside the Sec7 domain and a set of highly conserved amino acids within it. Determination of the importance of these conserved elements in Arf exchange activity and other cellular functions is now possible.


Assuntos
Fatores de Ribosilação do ADP/química , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Animais , Brefeldina A/farmacologia , Catálise , Sequência Conservada , Bases de Dados como Assunto , Proteínas Fúngicas/química , Modelos Genéticos , Modelos Moleculares , Modelos Estatísticos , Filogenia , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Especificidade da Espécie
4.
J Histochem Cytochem ; 51(2): 205-14, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12533529

RESUMO

We previously demonstrated that quantitative immunohistochemistry (Q-IHC) performed by measuring the cumulative signal strength of the digital file encoding an image can be used to determine the absolute amount of chromogen present per pixel. We now show that Q-IHC so performed can be used to accurately determine the amount of peptide hormone receptor of interest in archived tissues. To do this we transfected Balb 3T3 fibroblasts with the cDNA encoding the human receptor for gastrin-releasing peptide (GRP), and selected six cell lines stably expressing between 10(2) and 10(6) receptors/cell. These cell lines were fixed in formalin, embedded in paraffin, and treated with antipeptide antibodies against the GRP receptor, followed by DAB chromogen to identify bound antibody. Images were acquired using a 4.9 million pixel digital scanning 24-bit RGB camera, saved in TIFF format, and used for subsequent analysis. Q-IHC was performed after digitally dissecting out the relevant portion of the image for analysis, and processing using a program written in C (available at http://www.uic.edu/com/dom/gastro/Freedownloads.html). Under the conditions defined here, chromogen quantity as determined by Q-IHC tightly correlated with GRP receptor number (r(2)=0.867) in these cell lines. Using the conversion factor identified as a result of these studies, we then determined GRP receptor number on eight randomly selected, archived human colon cancers. Overall GRP receptor expression in colon cancer depended on the degree to which cells within any particular tumor were differentiated, with well-differentiated cells expressing the greatest numbers of receptors (approximately 55,000 +/- 10,000 sites/cell). These studies indicate that Q-IHC can be used to determine receptor quantity in archived tissues and other samples of limited quantity.


Assuntos
Imuno-Histoquímica/métodos , Receptores de Peptídeos/metabolismo , Algoritmos , Sítios de Ligação , Linhagem Celular , Compostos Cromogênicos/metabolismo , Humanos , Imuno-Histoquímica/instrumentação , Internet , Software , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA