Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 46(3): 797-815, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28098280

RESUMO

Electrochemical energy storage is one of the main societal challenges to humankind in this century. The performances of classical Li-ion batteries (LIBs) with non-aqueous liquid electrolytes have made great advances in the past two decades, but the intrinsic instability of liquid electrolytes results in safety issues, and the energy density of the state-of-the-art LIBs cannot satisfy the practical requirement. Therefore, rechargeable lithium metal batteries (LMBs) have been intensively investigated considering the high theoretical capacity of lithium metal and its low negative potential. However, the progress in the field of non-aqueous liquid electrolytes for LMBs has been sluggish, with several seemingly insurmountable barriers, including dendritic Li growth and rapid capacity fading. Solid polymer electrolytes (SPEs) offer a perfect solution to these safety concerns and to the enhancement of energy density. Traditional SPEs are dual-ion conductors, in which both cations and anions are mobile and will cause a concentration polarization thus leading to poor performances of both LIBs and LMBs. Single lithium-ion (Li-ion) conducting solid polymer electrolytes (SLIC-SPEs), which have anions covalently bonded to the polymer, inorganic backbone, or immobilized by anion acceptors, are generally accepted to have advantages over conventional dual-ion conducting SPEs for application in LMBs. A high Li-ion transference number (LTN), the absence of the detrimental effect of anion polarization, and the low rate of Li dendrite growth are examples of benefits of SLIC-SPEs. To date, many types of SLIC-SPEs have been reported, including those based on organic polymers, organic-inorganic hybrid polymers and anion acceptors. In this review, a brief overview of synthetic strategies on how to realize SLIC-SPEs is given. The fundamental physical and electrochemical properties of SLIC-SPEs prepared by different methods are discussed in detail. In particular, special attention is paid to the SLIC-SPEs with high ionic conductivity and high LTN. Finally, perspectives on the main challenges and focus on the future research are also presented.

2.
Angew Chem Int Ed Engl ; 53(5): 1430-4, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24353035

RESUMO

A simple, flexible, and straightforward method for the functionalization of all the positions of the imidazole heterocycle through regioselective arylations, allylations, acylations, and additions to aldehydes is disclosed. Starting from the readily available key imidazole 1, highly functionalized imidazole derivatives have been synthesized in a regioselective manner from directed metalations and a sulfoxide/magnesium exchange. Moreover, the selective N3-alkylation followed by deprotection of N1 (trans-N-alkylation) allows the regioselective N-alkylation of complex imidazoles.


Assuntos
Imidazóis/química , Magnésio/química , Safrol/análogos & derivados , Alquilação , Catálise , Cobre/química , Safrol/química , Estereoisomerismo , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA