RESUMO
INTRODUCTION: Machine learning algorithms are expected to work side-by-side with humans in decision-making pipelines. Thus, the ability of classifiers to make reliable decisions is of paramount importance. Deep neural networks (DNNs) represent the state-of-the-art models to address real-world classification. Although the strength of activation in DNNs is often correlated with the network's confidence, in-depth analyses are needed to establish whether they are well calibrated. METHOD: In this paper, we demonstrate the use of DNN-based classification tools to benefit cancer registries by automating information extraction of disease at diagnosis and at surgery from electronic text pathology reports from the US National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) population-based cancer registries. In particular, we introduce multiple methods for selective classification to achieve a target level of accuracy on multiple classification tasks while minimizing the rejection amount-that is, the number of electronic pathology reports for which the model's predictions are unreliable. We evaluate the proposed methods by comparing our approach with the current in-house deep learning-based abstaining classifier. RESULTS: Overall, all the proposed selective classification methods effectively allow for achieving the targeted level of accuracy or higher in a trade-off analysis aimed to minimize the rejection rate. On in-distribution validation and holdout test data, with all the proposed methods, we achieve on all tasks the required target level of accuracy with a lower rejection rate than the deep abstaining classifier (DAC). Interpreting the results for the out-of-distribution test data is more complex; nevertheless, in this case as well, the rejection rate from the best among the proposed methods achieving 97% accuracy or higher is lower than the rejection rate based on the DAC. CONCLUSIONS: We show that although both approaches can flag those samples that should be manually reviewed and labeled by human annotators, the newly proposed methods retain a larger fraction and do so without retraining-thus offering a reduced computational cost compared with the in-house deep learning-based abstaining classifier.
Assuntos
Aprendizado Profundo , Humanos , Incerteza , Redes Neurais de Computação , Algoritmos , Aprendizado de MáquinaRESUMO
BACKGROUND: Applying graph convolutional networks (GCN) to the classification of free-form natural language texts leveraged by graph-of-words features (TextGCN) was studied and confirmed to be an effective means of describing complex natural language texts. However, the text classification models based on the TextGCN possess weaknesses in terms of memory consumption and model dissemination and distribution. In this paper, we present a fast message passing network (FastMPN), implementing a GCN with message passing architecture that provides versatility and flexibility by allowing trainable node embedding and edge weights, helping the GCN model find the better solution. We applied the FastMPN model to the task of clinical information extraction from cancer pathology reports, extracting the following six properties: main site, subsite, laterality, histology, behavior, and grade. RESULTS: We evaluated the clinical task performance of the FastMPN models in terms of micro- and macro-averaged F1 scores. A comparison was performed with the multi-task convolutional neural network (MT-CNN) model. Results show that the FastMPN model is equivalent to or better than the MT-CNN. CONCLUSIONS: Our implementation revealed that our FastMPN model, which is based on the PyTorch platform, can train a large corpus (667,290 training samples) with 202,373 unique words in less than 3 minutes per epoch using one NVIDIA V100 hardware accelerator. Our experiments demonstrated that using this implementation, the clinical task performance scores of information extraction related to tumors from cancer pathology reports were highly competitive.
Assuntos
Processamento de Linguagem Natural , Neoplasias , Redes Neurais de Computação , Humanos , Neoplasias/classificação , Mineração de DadosRESUMO
BACKGROUND: Cancer recurrence is an important measure of the impact of cancer treatment. However, no population-based data on recurrence are available. Pathology reports could potentially identify cancer recurrences. Their utility to capture recurrences is unknown. OBJECTIVE: This analysis assesses the sensitivity of pathology reports to identify patients with cancer recurrence and the stage at recurrence. SUBJECTS: The study includes patients with recurrent breast (n=214) or colorectal (n=203) cancers. RESEARCH DESIGN: This retrospective analysis included patients from a population-based cancer registry who were part of the Patient-Centered Outcomes Research (PCOR) Study, a project that followed cancer patients in-depth for 5 years after diagnosis to identify recurrences. MEASURES: Information abstracted from pathology reports for patients with recurrence was compared with their PCOR data (gold standard) to determine what percent had a pathology report at the time of recurrence, the sensitivity of text in the report to identify recurrence, and if the stage at recurrence could be determined from the pathology report. RESULTS: One half of cancer patients had a pathology report near the time of recurrence. For patients with a pathology report, the report's sensitivity to identify recurrence was 98.1% for breast cancer cases and 95.7% for colorectal cancer cases. The specific stage at recurrence from the pathology report had a moderate agreement with gold-standard data. CONCLUSIONS: Pathology reports alone cannot measure population-based recurrence of solid cancers but can identify specific cohorts of recurrent cancer patients. As electronic submission of pathology reports increases, these reports may identify specific recurrent patients in near real-time.
Assuntos
Documentação/normas , Neoplasias/diagnóstico , Neoplasias/patologia , Recidiva , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/patologia , Documentação/métodos , Documentação/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Estudos RetrospectivosRESUMO
In the last decade, the widespread adoption of electronic health record documentation has created huge opportunities for information mining. Natural language processing (NLP) techniques using machine and deep learning are becoming increasingly widespread for information extraction tasks from unstructured clinical notes. Disparities in performance when deploying machine learning models in the real world have recently received considerable attention. In the clinical NLP domain, the robustness of convolutional neural networks (CNNs) for classifying cancer pathology reports under natural distribution shifts remains understudied. In this research, we aim to quantify and improve the performance of the CNN for text classification on out-of-distribution (OOD) datasets resulting from the natural evolution of clinical text in pathology reports. We identified class imbalance due to different prevalence of cancer types as one of the sources of performance drop and analyzed the impact of previous methods for addressing class imbalance when deploying models in real-world domains. Our results show that our novel class-specialized ensemble technique outperforms other methods for the classification of rare cancer types in terms of macro F1 scores. We also found that traditional ensemble methods perform better in top classes, leading to higher micro F1 scores. Based on our findings, we formulate a series of recommendations for other ML practitioners on how to build robust models with extremely imbalanced datasets in biomedical NLP applications.
Assuntos
Processamento de Linguagem Natural , Neoplasias , Registros Eletrônicos de Saúde , Humanos , Aprendizado de Máquina , Redes Neurais de ComputaçãoRESUMO
BACKGROUND: Automated text classification has many important applications in the clinical setting; however, obtaining labelled data for training machine learning and deep learning models is often difficult and expensive. Active learning techniques may mitigate this challenge by reducing the amount of labelled data required to effectively train a model. In this study, we analyze the effectiveness of 11 active learning algorithms on classifying subsite and histology from cancer pathology reports using a Convolutional Neural Network as the text classification model. RESULTS: We compare the performance of each active learning strategy using two differently sized datasets and two different classification tasks. Our results show that on all tasks and dataset sizes, all active learning strategies except diversity-sampling strategies outperformed random sampling, i.e., no active learning. On our large dataset (15K initial labelled samples, adding 15K additional labelled samples each iteration of active learning), there was no clear winner between the different active learning strategies. On our small dataset (1K initial labelled samples, adding 1K additional labelled samples each iteration of active learning), marginal and ratio uncertainty sampling performed better than all other active learning techniques. We found that compared to random sampling, active learning strongly helps performance on rare classes by focusing on underrepresented classes. CONCLUSIONS: Active learning can save annotation cost by helping human annotators efficiently and intelligently select which samples to label. Our results show that a dataset constructed using effective active learning techniques requires less than half the amount of labelled data to achieve the same performance as a dataset constructed using random sampling.
Assuntos
Aprendizado de Máquina , Neoplasias , Algoritmos , Humanos , Neoplasias/genética , Neoplasias/patologia , Redes Neurais de ComputaçãoRESUMO
BACKGROUND: Machine learning (ML) has made a significant impact in medicine and cancer research; however, its impact in these areas has been undeniably slower and more limited than in other application domains. A major reason for this has been the lack of availability of patient data to the broader ML research community, in large part due to patient privacy protection concerns. High-quality, realistic, synthetic datasets can be leveraged to accelerate methodological developments in medicine. By and large, medical data is high dimensional and often categorical. These characteristics pose multiple modeling challenges. METHODS: In this paper, we evaluate three classes of synthetic data generation approaches; probabilistic models, classification-based imputation models, and generative adversarial neural networks. Metrics for evaluating the quality of the generated synthetic datasets are presented and discussed. RESULTS: While the results and discussions are broadly applicable to medical data, for demonstration purposes we generate synthetic datasets for cancer based on the publicly available cancer registry data from the Surveillance Epidemiology and End Results (SEER) program. Specifically, our cohort consists of breast, respiratory, and non-solid cancer cases diagnosed between 2010 and 2015, which includes over 360,000 individual cases. CONCLUSIONS: We discuss the trade-offs of the different methods and metrics, providing guidance on considerations for the generation and usage of medical synthetic data.
Assuntos
Aprendizado de Máquina , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Redes Neurais de ComputaçãoRESUMO
OBJECTIVE: In machine learning, it is evident that the classification of the task performance increases if bootstrap aggregation (bagging) is applied. However, the bagging of deep neural networks takes tremendous amounts of computational resources and training time. The research question that we aimed to answer in this research is whether we could achieve higher task performance scores and accelerate the training by dividing a problem into sub-problems. MATERIALS AND METHODS: The data used in this study consist of free text from electronic cancer pathology reports. We applied bagging and partitioned data training using Multi-Task Convolutional Neural Network (MT-CNN) and Multi-Task Hierarchical Convolutional Attention Network (MT-HCAN) classifiers. We split a big problem into 20 sub-problems, resampled the training cases 2,000 times, and trained the deep learning model for each bootstrap sample and each sub-problem-thus, generating up to 40,000 models. We performed the training of many models concurrently in a high-performance computing environment at Oak Ridge National Laboratory (ORNL). RESULTS: We demonstrated that aggregation of the models improves task performance compared with the single-model approach, which is consistent with other research studies; and we demonstrated that the two proposed partitioned bagging methods achieved higher classification accuracy scores on four tasks. Notably, the improvements were significant for the extraction of cancer histology data, which had more than 500 class labels in the task; these results show that data partition may alleviate the complexity of the task. On the contrary, the methods did not achieve superior scores for the tasks of site and subsite classification. Intrinsically, since data partitioning was based on the primary cancer site, the accuracy depended on the determination of the partitions, which needs further investigation and improvement. CONCLUSION: Results in this research demonstrate that 1. The data partitioning and bagging strategy achieved higher performance scores. 2. We achieved faster training leveraged by the high-performance Summit supercomputer at ORNL.
Assuntos
Neoplasias , Redes Neurais de Computação , Metodologias Computacionais , Humanos , Armazenamento e Recuperação da Informação , Aprendizado de MáquinaRESUMO
BACKGROUND: Researchers have used prostate-specific antigen (PSA) values collected by central cancer registries to evaluate tumors for potential aggressive clinical disease. An independent study collecting PSA values suggested a high error rate (18%) related to implied decimal points. To evaluate the error rate in the Surveillance, Epidemiology, and End Results (SEER) program, a comprehensive review of PSA values recorded across all SEER registries was performed. METHODS: Consolidated PSA values for eligible prostate cancer cases in SEER registries were reviewed and compared with text documentation from abstracted records. Four types of classification errors were identified: implied decimal point errors, abstraction or coding implementation errors, nonsignificant errors, and changes related to "unknown" values. RESULTS: A total of 50,277 prostate cancer cases diagnosed in 2012 were reviewed. Approximately 94.15% of cases did not have meaningful changes (85.85% correct, 5.58% with a nonsignificant change of <1 ng/mL, and 2.80% with no clinical change). Approximately 5.70% of cases had meaningful changes (1.93% due to implied decimal point errors, 1.54% due to abstract or coding errors, and 2.23% due to errors related to unknown categories). Only 419 of the original 50,277 cases (0.83%) resulted in a change in disease stage due to a corrected PSA value. CONCLUSIONS: The implied decimal error rate was only 1.93% of all cases in the current validation study, with a meaningful error rate of 5.81%. The reasons for the lower error rate in SEER are likely due to ongoing and rigorous quality control and visual editing processes by the central registries. The SEER program currently is reviewing and correcting PSA values back to 2004 and will re-release these data in the public use research file. Cancer 2017;123:697-703. © 2016 American Cancer Society.
Assuntos
Valor Preditivo dos Testes , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/epidemiologia , Programa de SEER , Humanos , Masculino , Estadiamento de Neoplasias , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologiaRESUMO
The National Cancer Institute and the Department of Energy strategic partnership applies advanced computing and predictive machine learning and deep learning models to automate the capture of information from unstructured clinical text for inclusion in cancer registries. Applications include extraction of key data elements from pathology reports, determination of whether a pathology or radiology report is related to cancer, extraction of relevant biomarker information, and identification of recurrence. With the growing complexity of cancer diagnosis and treatment, capturing essential information with purely manual methods is increasingly difficult. These new methods for applying advanced computational capabilities to automate data extraction represent an opportunity to close critical information gaps and create a nimble, flexible platform on which new information sources, such as genomics, can be added. This will ultimately provide a deeper understanding of the drivers of cancer and outcomes in the population and increase the timeliness of reporting. These advances will enable better understanding of how real-world patients are treated and the outcomes associated with those treatments in the context of our complex medical and social environment.
Assuntos
Aprendizado Profundo , Aprendizado de Máquina , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Estados Unidos/epidemiologia , Sistema de Registros , National Cancer Institute (U.S.)RESUMO
BACKGROUND: A lag time between cancer case diagnosis and incidence reporting impedes the ability to monitor the impact of recent events on cancer incidence. Currently, the data submission standard is 22 months after a diagnosis year ends, and the reporting standard is 27.5 months after a diagnosis year ends. This paper presents the National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) Program's efforts to minimize the lag and achieve "real-time" reporting, operationalized as submission within 2 months from the end of a diagnosis year. METHODS: Technology for rapidly creating a consolidated tumor case (CTC) from electronic pathology (e-path) reports is described. Statistical methods are extended to adjust for biases in incidence rates due to reporting delays for the most recent diagnosis years. RESULTS: A registry pilot study demonstrated that real-time submissions can approximate rates obtained from 22-month submissions after adjusting for reporting delays. A plan to be implemented across the SEER Program rapidly ascertains unstructured e-path reports and uses machine learning algorithms to translate the reports into the core data items that comprise a CTC for incidence reporting. Across the program, cases were submitted 2 months after the end of the calendar year. Registries with the most promising baseline values and a willingness to modify registry operations have joined a program to become certified as real-time reporting. CONCLUSION: Advances in electronic reporting, natural language processing, registry operations, and statistical methodology, energized by the SEER Program's mobilization and coordination of these efforts, will make real-time reporting an achievable goal.
Assuntos
Neoplasias , Programa de SEER , Humanos , Programa de SEER/estatística & dados numéricos , Projetos Piloto , Neoplasias/epidemiologia , Neoplasias/diagnóstico , Incidência , Estados Unidos/epidemiologia , Sistema de Registros , National Cancer Institute (U.S.)RESUMO
The National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) program is continuously exploring opportunities to augment its already extensive collection of data, enhance the quality of reported cancer information, and contribute to more comprehensive analyses of cancer burden. This manuscript describes a recent linkage of the LexisNexis longitudinal residential history data with 11 SEER registries and provides estimates of the inter-state mobility of SEER cancer patients. To identify mobility from one state to another, we used state postal abbreviations to generate state-level residential histories. From this, we determined how often cancer patients moved from state-to-state. The results in this paper provide information on the linkage with LexisNexis data and useful information on state-to-state residential mobility patterns of a large portion of US cancer patients for the most recent 1-, 2-, 3-, 4-, and 5-year periods. We show that mobility patterns vary by geographic area, race/ethnicity and age, and cancer patients tend to move less than the general population.
Assuntos
Neoplasias , Humanos , Estados Unidos/epidemiologia , Neoplasias/epidemiologia , Sistema de Registros , Dinâmica Populacional , Etnicidade , Programa de SEERRESUMO
Objectives: The International Classification of Childhood Cancer (ICCC) facilitates the effective classification of a heterogeneous group of cancers in the important pediatric population. However, there has been no development of machine learning models for the ICCC classification. We developed deep learning-based information extraction models from cancer pathology reports based on the ICD-O-3 coding standard. In this article, we describe extending the models to perform ICCC classification. Materials and Methods: We developed 2 models, ICD-O-3 classification and ICCC recoding (Model 1) and direct ICCC classification (Model 2), and 4 scenarios subject to the training sample size. We evaluated these models with a corpus consisting of 29â206 reports with age at diagnosis between 0 and 19 from 6 state cancer registries. Results: Our findings suggest that the direct ICCC classification (Model 2) is substantially better than reusing the ICD-O-3 classification model (Model 1). Applying the uncertainty quantification mechanism to assess the confidence of the algorithm in assigning a code demonstrated that the model achieved a micro-F1 score of 0.987 while abstaining (not sufficiently confident to assign a code) on only 14.8% of ambiguous pathology reports. Conclusions: Our experimental results suggest that the machine learning-based automatic information extraction from childhood cancer pathology reports in the ICCC is a reliable means of supplementing human annotators at state cancer registries by reading and abstracting the majority of the childhood cancer pathology reports accurately and reliably.
RESUMO
The coronavirus disease 2019 (COVID-19) pandemic led to delayed medical care in the United States. We examined changes in patterns of cancer diagnosis and surgical treatment between January 1 and December 31 in 2020 and 2019 with real-time electronic pathology report data from population-based Surveillance, Epidemiology, and End Results cancer registries from Georgia and Louisiana. During 2020, there were 29 905 fewer pathology reports than in 2019, representing a 10.2% decline. Declines were observed in all age groups, including children and adolescents younger than 18 years. The nadir was early April 2020, with 42.8% fewer reports than in April 2019. Numbers of reports through December 2020 never consistently exceeded those in 2019 after first declines. Patterns were similar by age group and cancer site. Findings suggest substantial delays in diagnosis and treatment services for cancers during the pandemic. Ongoing evaluation can inform public health efforts to minimize any lasting adverse effects of the pandemic on cancer diagnosis, stage, treatment, and survival.
Assuntos
COVID-19 , Neoplasias , Adolescente , COVID-19/epidemiologia , Criança , Humanos , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Neoplasias/terapia , Pandemias , Vigilância da População , Sistema de Registros , Estados Unidos/epidemiologiaRESUMO
Objective: We aim to reduce overfitting and model overconfidence by distilling the knowledge of an ensemble of deep learning models into a single model for the classification of cancer pathology reports. Materials and Methods: We consider the text classification problem that involves 5 individual tasks. The baseline model consists of a multitask convolutional neural network (MtCNN), and the implemented ensemble (teacher) consists of 1000 MtCNNs. We performed knowledge transfer by training a single model (student) with soft labels derived through the aggregation of ensemble predictions. We evaluate performance based on accuracy and abstention rates by using softmax thresholding. Results: The student model outperforms the baseline MtCNN in terms of abstention rates and accuracy, thereby allowing the model to be used with a larger volume of documents when deployed. The highest boost was observed for subsite and histology, for which the student model classified an additional 1.81% reports for subsite and 3.33% reports for histology. Discussion: Ensemble predictions provide a useful strategy for quantifying the uncertainty inherent in labeled data and thereby enable the construction of soft labels with estimated probabilities for multiple classes for a given document. Training models with the derived soft labels reduce model confidence in difficult-to-classify documents, thereby leading to a reduction in the number of highly confident wrong predictions. Conclusions: Ensemble model distillation is a simple tool to reduce model overconfidence in problems with extreme class imbalance and noisy datasets. These methods can facilitate the deployment of deep learning models in high-risk domains with low computational resources where minimizing inference time is required.
RESUMO
BACKGROUND: With the use of artificial intelligence and machine learning techniques for biomedical informatics, security and privacy concerns over the data and subject identities have also become an important issue and essential research topic. Without intentional safeguards, machine learning models may find patterns and features to improve task performance that are associated with private personal information. OBJECTIVE: The privacy vulnerability of deep learning models for information extraction from medical textural contents needs to be quantified since the models are exposed to private health information and personally identifiable information. The objective of the study is to quantify the privacy vulnerability of the deep learning models for natural language processing and explore a proper way of securing patients' information to mitigate confidentiality breaches. METHODS: The target model is the multitask convolutional neural network for information extraction from cancer pathology reports, where the data for training the model are from multiple state population-based cancer registries. This study proposes the following schemes to collect vocabularies from the cancer pathology reports; (a) words appearing in multiple registries, and (b) words that have higher mutual information. We performed membership inference attacks on the models in high-performance computing environments. RESULTS: The comparison outcomes suggest that the proposed vocabulary selection methods resulted in lower privacy vulnerability while maintaining the same level of clinical task performance.
Assuntos
Confidencialidade , Aprendizado Profundo , Armazenamento e Recuperação da Informação/métodos , Processamento de Linguagem Natural , Neoplasias/epidemiologia , Inteligência Artificial , Aprendizado Profundo/normas , Humanos , Neoplasias/patologia , Sistema de RegistrosRESUMO
Recent applications ofdeep learning have shown promising results for classifying unstructured text in the healthcare domain. However, the reliability of models in production settings has been hindered by imbalanced data sets in which a small subset of the classes dominate. In the absence of adequate training data, rare classes necessitate additional model constraints for robust performance. Here, we present a strategy for incorporating short sequences of text (i.e. keywords) into training to boost model accuracy on rare classes. In our approach, we assemble a set of keywords, including short phrases, associated with each class. The keywords are then used as additional data during each batch of model training, resulting in a training loss that has contributions from both raw data and keywords. We evaluate our approach on classification of cancer pathology reports, which shows a substantial increase in model performance for rare classes. Furthermore, we analyze the impact of keywords on model output probabilities for bigrams, providing a straightforward method to identify model difficulties for limited training data.
Assuntos
Reprodutibilidade dos Testes , Coleta de Dados , HumanosRESUMO
Bidirectional Encoder Representations from Transformers (BERT) and BERT-based approaches are the current state-of-the-art in many natural language processing (NLP) tasks; however, their application to document classification on long clinical texts is limited. In this work, we introduce four methods to scale BERT, which by default can only handle input sequences up to approximately 400 words long, to perform document classification on clinical texts several thousand words long. We compare these methods against two much simpler architectures - a word-level convolutional neural network and a hierarchical self-attention network - and show that BERT often cannot beat these simpler baselines when classifying MIMIC-III discharge summaries and SEER cancer pathology reports. In our analysis, we show that two key components of BERT - pretraining and WordPiece tokenization - may actually be inhibiting BERT's performance on clinical text classification tasks where the input document is several thousand words long and where correctly identifying labels may depend more on identifying a few key words or phrases rather than understanding the contextual meaning of sequences of text.
Assuntos
Processamento de Linguagem Natural , Redes Neurais de Computação , HumanosRESUMO
Population cancer registries can benefit from Deep Learning (DL) to automatically extract cancer characteristics from the high volume of unstructured pathology text reports they process annually. The success of DL to tackle this and other real-world problems is proportional to the availability of large labeled datasets for model training. Although collaboration among cancer registries is essential to fully exploit the promise of DL, privacy and confidentiality concerns are main obstacles for data sharing across cancer registries. Moreover, DL for natural language processing (NLP) requires sharing a vocabulary dictionary for the embedding layer which may contain patient identifiers. Thus, even distributing the trained models across cancer registries causes a privacy violation issue. In this paper, we propose DL NLP model distribution via privacy-preserving transfer learning approaches without sharing sensitive data. These approaches are used to distribute a multitask convolutional neural network (MT-CNN) NLP model among cancer registries. The model is trained to extract six key cancer characteristics - tumor site, subsite, laterality, behavior, histology, and grade - from cancer pathology reports. Using 410,064 pathology documents from two cancer registries, we compare our proposed approach to conventional transfer learning without privacy-preserving, single-registry models, and a model trained on centrally hosted data. The results show that transfer learning approaches including data sharing and model distribution outperform significantly the single-registry model. In addition, the best performing privacy-preserving model distribution approach achieves statistically indistinguishable average micro- and macro-F1 scores across all extraction tasks (0.823,0.580) as compared to the centralized model (0.827,0.585).
RESUMO
BACKGROUND: The Social Security Administration Service to Epidemiological Researchers (SSA-SER) can help central cancer registries meet the contractual follow-up requirements of the Surveillance, Epidemiology, and End Results (SEER) Program and improve survival estimate accuracy. We evaluated the impact of first-time SSA-SER linkage on follow-up rates and survival estimates for 2 SEER registries. Methods: In May 2019, cancer registries in Idaho (Cancer Data Registry of Idaho [CDRI]) and New York (New York State Cancer Registry [NYSCR]) used results from an SSA-SER linkage to update date of last contact and vital status for patients with a SEER-reportable tumor diagnosed during 2000-2016. We compared follow-up completeness through 2017 between pre-SSA-SER linkage and post-SSA-SER linkage data. Among individuals with a first primary tumor diagnosed during 2009-2015, we calculated 60-month age-standardized all sites and site-specific relative survival ratio (RSR) estimates via the presumed alive method using pre-SSA linkage data, and survival time calculated from last known date of contact using post-SSA linkage data. Results: SSA-SER linkage improved overall followup completeness from 79.0% to 97.4% and 55.7% to 92.6% for CDRI and NYSCR, respectively. Follow-up completeness improved most for laboratory-only reported tumors, in situ tumors, melanomas of the skin, prostate cancers, and benign and borderline brain and other central nervous system tumors. Post-SSA linkage RSRs were lower than pre-SSA presumed alive RSRs by an average -0.47% and -2.16% for Idaho and New York, respectively. Conclusions: SSA-SER linkage greatly and efficiently improved follow-up completeness for the 2 participating registries and revealed small difference in survival estimates by method. Use of the SSA-SER by all US registries would standardize and improve US survival estimates.
RESUMO
Individual electronic health records (EHRs) and clinical reports are often part of a larger sequence-for example, a single patient may generate multiple reports over the trajectory of a disease. In applications such as cancer pathology reports, it is necessary not only to extract information from individual reports, but also to capture aggregate information regarding the entire cancer case based off case-level context from all reports in the sequence. In this paper, we introduce a simple modular add-on for capturing case-level context that is designed to be compatible with most existing deep learning architectures for text classification on individual reports. We test our approach on a corpus of 431,433 cancer pathology reports, and we show that incorporating case-level context significantly boosts classification accuracy across six classification tasks-site, subsite, laterality, histology, behavior, and grade. We expect that with minimal modifications, our add-on can be applied towards a wide range of other clinical text-based tasks.