Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Appl Environ Microbiol ; 90(2): e0149023, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38294246

RESUMO

The Permian Basin, underlying southeast New Mexico and west Texas, is one of the most productive oil and gas (OG) provinces in the United States. Oil and gas production yields large volumes of wastewater with complex chemistries, and the environmental health risks posed by these OG wastewaters on sensitive desert ecosystems are poorly understood. Starting in November 2017, 39 illegal dumps, as defined by federal and state regulations, of OG wastewater were identified in southeastern New Mexico, releasing ~600,000 L of fluid onto dryland soils. To evaluate the impacts of these releases, we analyzed changes in soil geochemistry and microbial community composition by comparing soils from within OG wastewater dump-affected samples to unaffected zones. We observed significant changes in soil geochemistry for all dump-affected compared with control samples, reflecting the residual salts and hydrocarbons from the OG-wastewater release (e.g., enriched in sodium, chloride, and bromide). Microbial community structure significantly (P < 0.01) differed between dump and control zones, with soils from dump areas having significantly (P < 0.01) lower alpha diversity and differences in phylogenetic composition. Dump-affected soil samples showed an increase in halophilic and halotolerant taxa, including members of the Marinobacteraceae, Halomonadaceae, and Halobacteroidaceae, suggesting that the high salinity of the dumped OG wastewater was exerting a strong selective pressure on microbial community structure. Taxa with high similarity to known hydrocarbon-degrading organisms were also detected in the dump-affected soil samples. Overall, this study demonstrates the potential for OG wastewater exposure to change the geochemistry and microbial community dynamics of arid soils.IMPORTANCEThe long-term environmental health impacts resulting from releases of oil and gas (OG) wastewater, typically brines with varying compositions of ions, hydrocarbons, and other constituents, are understudied. This is especially true for sensitive desert ecosystems, where soil microbes are key primary producers and drivers of nutrient cycling. We found that releases of OG wastewater can lead to shifts in microbial community composition and function toward salt- and hydrocarbon-tolerant taxa that are not typically found in desert soils, thus altering the impacted dryland soil ecosystem. Loss of key microbial taxa, such as those that catalyze organic carbon cycling, increase arid soil fertility, promote plant health, and affect soil moisture retention, could result in cascading effects across the sensitive desert ecosystem. By characterizing environmental changes due to releases of OG wastewater to soils overlying the Permian Basin, we gain further insights into how OG wastewater may alter dryland soil microbial functions and ecosystems.


Assuntos
Microbiota , Águas Residuárias , Microbiologia do Solo , Solo/química , Filogenia , Clima Desértico , Hidrocarbonetos
2.
Environ Sci Technol ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36626647

RESUMO

Global demand for safe and sustainable water supplies necessitates a better understanding of contaminant exposures in potential reuse waters. In this study, we compared exposures and load contributions to surface water from the discharge of three reuse waters (wastewater effluent, urban stormwater, and agricultural runoff). Results document substantial and varying organic-chemical contribution to surface water from effluent discharges (e.g., disinfection byproducts [DBP], prescription pharmaceuticals, industrial/household chemicals), urban stormwater (e.g., polycyclic aromatic hydrocarbons, pesticides, nonprescription pharmaceuticals), and agricultural runoff (e.g., pesticides). Excluding DBPs, episodic storm-event organic concentrations and loads from urban stormwater were comparable to and often exceeded those of daily wastewater-effluent discharges. We also assessed if wastewater-effluent irrigation to corn resulted in measurable effects on organic-chemical concentrations in rain-induced agricultural runoff and harvested feedstock. Overall, the target-organic load of 491 g from wastewater-effluent irrigation to the study corn field during the 2019 growing season did not produce substantial dissolved organic-contaminant contributions in subsequent rain-induced runoff events. Out of the 140 detected organics in source wastewater-effluent irrigation, only imidacloprid and estrone had concentrations that resulted in observable differences between rain-induced agricultural runoff from the effluent-irrigated and nonirrigated corn fields. Analyses of pharmaceuticals and per-/polyfluoroalkyl substances in at-harvest corn-plant samples detected two prescription antibiotics, norfloxacin and ciprofloxacin, at concentrations of 36 and 70 ng/g, respectively, in effluent-irrigated corn-plant samples; no contaminants were detected in noneffluent irrigated corn-plant samples.

3.
Proc Natl Acad Sci U S A ; 117(7): 3670-3677, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015108

RESUMO

The number of horizontally drilled shale oil and gas wells in the United States has increased from nearly 28,000 in 2007 to nearly 127,000 in 2017, and research has suggested the potential for the development of shale resources to affect nearby stream ecosystems. However, the ability to generalize current studies is limited by the small geographic scope as well as limited breadth and integration of measured chemical and biological indicators parameters. This study tested the hypothesis that a quantifiable, significant relationship exists between the density of oil and gas (OG) development, increasing stream water concentrations of known geochemical tracers of OG extraction, and the composition of benthic macroinvertebrate and microbial communities. Twenty-five headwater streams that drain lands across a gradient of shale gas development intensity were sampled. Our strategy included comprehensive measurements across multiple seasons of sampling to account for temporal variability of geochemical parameters, including known shale OG geochemical tracers, and microbial and benthic macroinvertebrate communities. No significant relationships were found between the intensity of OG development, shale OG geochemical tracers, or benthic macroinvertebrate or microbial community composition, whereas significant seasonal differences in stream chemistry were observed. These results highlight the importance of considering spatial and temporal variability in stream chemistry and biota and not only the presence of anthropogenic activities in a watershed. This comprehensive, integrated study of geochemical and biological variability of headwater streams in watersheds undergoing OG development provides a robust framework for examining the effects of energy development at a regional scale.


Assuntos
Ecossistema , Campos de Petróleo e Gás/química , Rios/química , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Monitoramento Ambiental , Invertebrados/classificação , Invertebrados/crescimento & desenvolvimento , Pennsylvania , Rios/microbiologia , Rios/parasitologia
4.
Arch Environ Contam Toxicol ; 83(3): 253-271, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36129489

RESUMO

A pipeline carrying unconventional oil and gas (OG) wastewater spilled approximately 11 million liters of wastewater into Blacktail Creek, North Dakota, USA. Flow of the mix of stream water and wastewater down the channel resulted in storage of contaminants in the hyporheic zone and along the banks, providing a long-term source of wastewater constituents to the stream. A multi-level investigation was used to assess the potential effects of oil and brine spills on aquatic life. In this study, we used a combination of experiments using a native fish species, Fathead Minnow (Pimephales promelas), field sampling of the microbial community structure, and measures of estrogenicity. The fish investigation included in situ experiments and experiments with collected site water. Estrogenicity was measured in collected site water samples, and microbial community analyses were conducted on collected sediments. During the initial post-spill investigation, February 2015, performing in situ fish bioassays was impossible because of ice conditions. However, microbial community (e.g., the presence of members of the Halomonadaceae, a family that is indicative of elevated salinity) and estrogenicity differences were compared to reference sites and point to early biological effects of the spill. We noted water column effects on in situ fish survival 6 months post-spill during June 2015. At that time, total dissolved ammonium (sum of ammonium and ammonia, TAN) was 4.41 mg NH4/L with an associated NH3 of 1.09 mg/L, a concentration greater than the water quality criteria established to protect aquatic life. Biological measurements in the sediment defined early and long-lasting effects of the spill on aquatic resources. The microbial community structure was affected during all sampling events. Therefore, sediment may act as a sink for constituents spilled and as such provide an indication of continued and cumulative effects post-spill. However, lack of later water column effects may reflect pulse hyporheic flow of ammonia from shallow ground water. Combining fish toxicological, microbial community structure and estrogenicity information provides a complete ecological investigation that defines potential influences of contaminants at organismal, population, and community levels. In general, in situ bioassays have implications for the individual survival and changes at the population level, microbial community structure defines potential changes at the community level, and estrogenicity measurements define changes at the individual and molecular level. By understanding effects at these various levels of biological organization, natural resource managers can interpret how a course of action, especially for remediation/restoration, might affect a larger group of organisms in the system. The current work also reviews potential effects of additional constituents defined during chemistry investigations on aquatic resources.


Assuntos
Compostos de Amônio , Cyprinidae , Percas , Poluentes Químicos da Água , Animais , Amônia/análise , Compostos de Amônio/análise , Cyprinidae/fisiologia , Gelo/análise , North Dakota , Rios/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Nitrogênio/análise
5.
Environ Sci Technol ; 54(18): 11396-11404, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32790354

RESUMO

In crude oil contaminant plumes, the dissolved organic carbon (DOC) is mainly hydrocarbon degradation intermediates only partly quantified by the diesel range total petroleum hydrocarbon (TPHd) method. To understand potential biological effects of degradation intermediates, we tested three fractions of DOC: (1) solid-phase extract (HLB); (2) dichloromethane (DCM-total) extract used in TPHd; and (3) DCM extract with hydrocarbons isolated by silica gel cleanup (DCM-SGC). Bioactivity of extracts from five wells spanning a range of DOC was tested using an in vitro multiplex reporter system that evaluates modulation of the activity of 46 transcription factors; extracts were evaluated at concentrations equivalent to the well water samples. The aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) transcription factors showed the greatest upregulation, with HLB exceeding DCM-total, and no upregulation in the hydrocarbon fraction (DCM-SGC). The HLB extracts were further studied with HepG2 chemically activated luciferase expression (CALUX) in vitro assays at nine concentrations ranging from 40 to 0.01 times the well water concentrations. Responses decreased with distance from the source but were still present at two wells without detectable hydrocarbons. Thus, our in vitro assay results indicate that risks associated with degradation intermediates of hydrocarbons in groundwater will be underestimated when protocols that remove these chemicals are employed.


Assuntos
Produtos Biológicos , Água Subterrânea , Petróleo , Hidrocarbonetos , Receptores de Hidrocarboneto Arílico , Medição de Risco
6.
Environ Sci Technol ; 53(17): 10070-10081, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31432661

RESUMO

Increasing global reliance on stormwater control measures to reduce discharge to surface water, increase groundwater recharge, and minimize contaminant delivery to receiving waterbodies necessitates improved understanding of stormwater-contaminant profiles. A multiagency study of organic and inorganic chemicals in urban stormwater from 50 runoff events at 21 sites across the United States demonstrated that stormwater transports substantial mixtures of polycyclic aromatic hydrocarbons, bioactive contaminants (pesticides and pharmaceuticals), and other organic chemicals known or suspected to pose environmental health concern. Numerous organic-chemical detections per site (median number of chemicals detected = 73), individual concentrations exceeding 10 000 ng/L, and cumulative concentrations up to 263 000 ng/L suggested concern for potential environmental effects during runoff events. Organic concentrations, loads, and yields were positively correlated with impervious surfaces and highly developed urban catchments. Episodic storm-event organic concentrations and loads were comparable to and often exceeded those of daily wastewater plant discharges. Inorganic chemical concentrations were generally dilute in concentration and did not exceed chronic aquatic life criteria. Methylmercury was measured in 90% of samples with concentrations that ranged from 0.05 to 1.0 ng/L.


Assuntos
Água Subterrânea , Praguicidas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Chuva , Estados Unidos
7.
Arch Environ Contam Toxicol ; 76(4): 670-677, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30850858

RESUMO

Produced water (PW) from oil and gas extraction processes has been shown to contain elevated concentrations of major ions. The objective of this study was to determine the potential effects of elevated major ions in PW-contaminated surface water on a fish (fathead minnow, Pimephales promelas) and a unionid mussel (fatmucket, Lampsilis siliquoidea) in short-term (7-day) exposures. The test organisms were exposed in 3 reconstituted waters formulated with 1, 2, and 4 times the major ions measured at a PW-contaminated stream site 1 month after a PW spill from an oil production wastewater pipeline in the Williston Basin, North Dakota. A reconstituted water mimicking the ionic composition of an upstream site from the spill was used as a reference water. Significant reductions in survival and growth of the fish were observed in the 4× treatment compared with the reference. The mussels were more sensitive than the fish, with significant reductions in survival in the 2× and 4× treatments, and significant reductions in length in the 1× and 2× treatments. Overall, these results indicate that elevated concentrations of major ions in PW-contaminated surface waters could adversely affect the fish and mussels tested and potentially other aquatic organisms.


Assuntos
Cyprinidae/crescimento & desenvolvimento , Campos de Petróleo e Gás , Rios/química , Unionidae/efeitos dos fármacos , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Animais , Íons , Testes de Toxicidade , Unionidae/crescimento & desenvolvimento , Poluentes Químicos da Água/análise
8.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29453259

RESUMO

The development of unconventional oil and gas (UOG) resources results in the production of large volumes of wastewater containing a complex mixture of hydraulic fracturing chemical additives and components from the formation. The release of these wastewaters into the environment poses potential risks that are poorly understood. Microbial communities in stream sediments form the base of the food chain and may serve as sentinels for changes in stream health. Iron-reducing organisms have been shown to play a role in the biodegradation of a wide range of organic compounds, and so to evaluate their response to UOG wastewater, we enriched anaerobic microbial communities from sediments collected upstream (background) and downstream (impacted) of an UOG wastewater injection disposal facility in the presence of hydraulic fracturing fluid (HFF) additives: guar gum, ethylene glycol, and two biocides, 2,2-dibromo-3-nitrilopropionamide (DBNPA) and bronopol (C3H6BrNO4). Iron reduction was significantly inhibited early in the incubations with the addition of biocides, whereas amendment with guar gum and ethylene glycol stimulated iron reduction relative to levels in the unamended controls. Changes in the microbial community structure were observed across all treatments, indicating the potential for even small amounts of UOG wastewater components to influence natural microbial processes. The microbial community structure differed between enrichments with background and impacted sediments, suggesting that impacted sediments may have been preconditioned by exposure to wastewater. These experiments demonstrated the potential for biocides to significantly decrease iron reduction rates immediately following a spill and demonstrated how microbial communities previously exposed to UOG wastewater may be more resilient to additional spills.IMPORTANCE Organic components of UOG wastewater can alter microbial communities and biogeochemical processes, which could alter the rates of essential natural attenuation processes. These findings provide new insights into microbial responses following a release of UOG wastewaters and are critical for identifying strategies for the remediation and natural attenuation of impacted environments.


Assuntos
Desinfetantes/análise , Etilenoglicol/análise , Galactanos/análise , Fraturamento Hidráulico , Mananas/análise , Microbiota/efeitos dos fármacos , Gomas Vegetais/análise , Águas Residuárias/análise , Anaerobiose , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia
9.
Environ Sci Technol ; 52(21): 12172-12178, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30272965

RESUMO

Management of petroleum-impacted waters by monitored natural attenuation requires an understanding of the toxicology of both the original compounds released and the transformation products formed during natural breakdown. Here, we report data from a groundwater plume consisting of a mixture of crude oil compounds and transformation products in an effort to bridge the gap between groundwater quality information and potential biological effects of human exposures. Groundwater samples were characterized for redox processes, concentrations of nonvolatile dissolved organic carbon (NVDOC) and total petroleum hydrocarbons in the diesel range, as well as for activation of human nuclear receptors (hNR) and toxicologically relevant transcriptional pathways. Results show upregulation of several biological pathways, including peroxisome proliferator-activated receptor gamma and alpha, estrogen receptor alpha, and pregnane X receptor (PXR) with higher levels of hNR activity observed in more contaminated samples. Our study of affected groundwater contaminated by a crude-oil release 39 years ago shows these types of waters may have the potential to cause adverse impacts on development, endocrine, and liver functioning in exposed populations. Additionally, positive trends in activation of some of the molecular targets (e.g., PXR) with increasing NVDOC concentrations (including polar transformation products) demonstrate the importance of improving our understanding of the toxicity associated with the unknown transformation products present in hydrocarbon-impacted waters. Our results begin to provide insight into the potential toxicity of petroleum-impacted waters, which is particularly timely given the ubiquitous nature of waters impacted by petroleum contamination not only recently but also in the past and the need to protect drinking-water quality.


Assuntos
Água Subterrânea , Petróleo , Poluentes Químicos da Água , Biodegradação Ambiental , Hidrocarbonetos
10.
Environ Sci Technol ; 52(11): 6157-6166, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29715014

RESUMO

Groundwater samples containing petroleum-derived dissolved organic matter (DOMHC) originating from the north oil body within the National Crude Oil Spill Fate and Natural Attenuation Research Site near Bemidji, MN, USA were analyzed by optical spectroscopic techniques (i.e., absorbance and fluorescence) to assess relationships that can be used to examine natural attenuation and toxicity of DOMHC in contaminated groundwater. A strong correlation between the concentration of dissolved organic carbon (DOC) and absorbance at 254 nm ( a254) along a transect of the DOMHC plume indicates that a254 can be used to quantitatively assess natural attenuation of DOMHC. Fluorescence components, identified by parallel factor (PARAFAC) analysis, show that the composition of the DOMHC beneath and adjacent to the oil body is dominated by aliphatic, low O/C compounds ("protein-like" fluorescence) and that the composition gradually evolves to aromatic, high O/C compounds ("humic-/fulvic-like" fluorescence) as a function of distance downgradient from the oil body. Finally, a direct, positive correlation between optical properties and Microtox acute toxicity assays demonstrates the utility of these combined techniques in assessing the spatial and temporal natural attenuation and toxicity of the DOMHC in petroleum-impacted groundwater systems.


Assuntos
Água Subterrânea , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Espectrometria de Fluorescência , Análise Espectral
11.
Environ Sci Technol ; 51(21): 12139-12145, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28942635

RESUMO

In January 2014, approximately 37 800 L of crude 4-methylcyclohexanemethanol (crude MCHM) spilled into the Elk River, West Virginia. To understand the long-term fate of 4-MCHM, we conducted experiments under environmentally relevant conditions to assess the potential for the 2 primary compounds in crude MCHM (1) to undergo biodegradation and (2) for sediments to serve as a long-term source of 4-MCHM. We developed a solid phase microextraction (SPME) method to quantify the cis- and trans-isomers of 4-MCHM. Autoclaved Elk River sediment slurries sorbed 17.5% of cis-4-MCHM and 31% of trans-4-MCHM from water during the 2-week experiment. Sterilized, impacted, spill-site sediment released minor amounts of cis- and up to 35 µg/L of trans-4-MCHM into water, indicating 4-MCHM was present in sediment collected 10 months post spill. In anoxic microcosms, 300 µg/L cis- and 150 µg/L trans-4-MCHM degraded to nondetectable levels in 8-13 days in both impacted and background sediments. Under aerobic conditions, 4-MCHM isomers degraded to nondetectable levels within 4 days. Microbial communities at impacted sites differed in composition compared to background samples, but communities from both sites shifted in response to crude MCHM amendments. Our results indicate that 4-MCHM is readily biodegradable under environmentally relevant conditions.


Assuntos
Biodegradação Ambiental , Cicloexanos , Poluentes Químicos da Água , Sedimentos Geológicos , Rios , West Virginia
12.
Environ Sci Technol ; 50(11): 5517-25, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27158829

RESUMO

The development of unconventional oil and gas (UOG) resources has rapidly increased in recent years; however, the environmental impacts and risks are poorly understood. A single well can generate millions of liters of wastewater, representing a mixture of formation brine and injected hydraulic fracturing fluids. One of the most common methods for wastewater disposal is underground injection; we are assessing potential risks of this method through an intensive, interdisciplinary study at an injection disposal facility in West Virginia. In June 2014, waters collected downstream from the site had elevated specific conductance (416 µS/cm) and Na, Cl, Ba, Br, Sr, and Li concentrations, compared to upstream, background waters (conductivity, 74 µS/cm). Elevated TDS, a marker of UOG wastewater, provided an early indication of impacts in the stream. Wastewater inputs are also evident by changes in (87)Sr/(86)Sr in streamwater adjacent to the disposal facility. Sediments downstream from the facility were enriched in Ra and had high bioavailable Fe(III) concentrations relative to upstream sediments. Microbial communities in downstream sediments had lower diversity and shifts in composition. Although the hydrologic pathways were not able to be assessed, these data provide evidence demonstrating that activities at the disposal facility are impacting a nearby stream and altering the biogeochemistry of nearby ecosystems.


Assuntos
Compostos Férricos , Águas Residuárias/química , Ecossistema , Meio Ambiente , West Virginia
13.
Environ Sci Technol ; 49(22): 13179-89, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26486694

RESUMO

Biodegradation of organic matter, including petroleum-based fuels and biofuels, can create undesired secondary water-quality effects. Trace elements, especially arsenic (As), have strong adsorption affinities for Fe(III) (oxyhydr)-oxides and can be released to groundwater during Fe-reducing biodegradation. We investigated the mobilization of naturally occurring As, cobalt (Co), chromium (Cr), and nickel (Ni) from wetland sediments caused by the introduction of benzene, toluene, ethylbenzene, and xylenes (BTEX) and ethanol mixtures under iron- and nitrate-reducing conditions, using in situ push-pull tests. When BTEX alone was added, results showed simultaneous onset and similar rates of Fe reduction and As mobilization. In the presence of ethanol, the maximum rates of As release and Fe reduction were higher, the time to onset of reaction was decreased, and the rates occurred in multiple stages that reflected additional processes. The concentration of As increased from <1 µg/L to a maximum of 99 µg/L, exceeding the 10 µg/L limit for drinking water. Mobilization of Co, Cr, and Ni was observed in association with ethanol biodegradation but not with BTEX. These results demonstrate the potential for trace-element contamination of drinking water during biodegradation and highlight the importance of monitoring trace elements at natural and enhanced attenuation sites.


Assuntos
Arsênio/análise , Etanol/química , Ferro/química , Poluentes Químicos da Água/análise , Arsênio/química , Arsênio/metabolismo , Benzeno/química , Benzeno/metabolismo , Derivados de Benzeno/química , Derivados de Benzeno/metabolismo , Biodegradação Ambiental , Etanol/metabolismo , Compostos Férricos/química , Água Subterrânea/química , Minnesota , Nitratos/química , Oxirredução , Petróleo , Tolueno/química , Tolueno/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Áreas Alagadas , Xilenos/química , Xilenos/metabolismo
14.
Environ Sci Technol ; 49(4): 2156-62, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25607467

RESUMO

Chromate was used as a chemical probe to investigate the size-dependent influence of organics on nanoparticle surface reactivity. Magnetite-chromate sorption experiments were conducted with ∼ 90 and ∼ 6 nm magnetite nanoparticles in the presence and absence of fulvic acid (FA), natural organic matter (NOM), and isolated landfill leachate (LL). Results indicated that low concentrations (1 mg/L) of organics had no noticeable impact on chromate sorption, whereas concentrations of 50 mg/L or more resulted in decreased amounts of chromate sorption. The adsorption of organics onto the magnetite surfaces interfered equally with the ability of the 6 and 90 nm particles to sorb chromate from solution, despite the greater surface area of the smaller particles. Results indicate the presence of organics did not impact the redox chemistry of the magnetite-chromate system over the duration of the experiments (8 h), nor did the organics interact with the chromate in solution. Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM) results indicate that the organics blocked the surface reactivity by occupying surface sites on the particles. The similarity of results with FA and NOM suggests that coverage of the reactive mineral surface is the main factor behind the inhibition of surface reactivity in the presence of organics.


Assuntos
Cromatos/química , Nanopartículas de Magnetita/química , Adsorção , Benzopiranos/química , Substâncias Húmicas/análise , Microscopia Eletrônica de Varredura , Oxirredução , Propriedades de Superfície , Poluentes Químicos da Água/química
15.
Microb Ecol ; 68(3): 453-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24760171

RESUMO

Small-scale geochemical gradients are a key feature of aquifer contaminant plumes, highlighting the need for functional and structural profiling of corresponding microbial communities on a similar scale. The purpose of this study was to characterize the microbial functional and structural diversity with depth across representative redox zones of a hydrocarbon plume and an adjacent wetland, at the Bemidji Oil Spill site. A combination of quantitative PCR, denaturing gradient gel electrophoresis, and pyrosequencing were applied to vertically sampled sediment cores. Levels of the methanogenic marker gene, methyl coenzyme-M reductase A (mcrA), increased with depth near the oil body center, but were variable with depth further downgradient. Benzoate degradation N (bzdN) hydrocarbon-degradation gene, common to facultatively anaerobic Azoarcus spp., was found at all locations, but was highest near the oil body center. Microbial community structural differences were observed across sediment cores, and bacterial classes containing known hydrocarbon degraders were found to be low in relative abundance. Depth-resolved functional and structural profiling revealed the strongest gradients in the iron-reducing zone, displaying the greatest variability with depth. This study provides important insight into biogeochemical characteristics in different regions of contaminant plumes, which will aid in improving models of contaminant fate and natural attenuation rates.


Assuntos
Bactérias/classificação , Água Subterrânea/microbiologia , Petróleo/metabolismo , Poluentes Químicos da Água/metabolismo , Azoarcus/genética , Azoarcus/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Genes Bacterianos , Sedimentos Geológicos/microbiologia , Água Subterrânea/química , Poluição por Petróleo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Áreas Alagadas
16.
Environ Sci Technol ; 48(19): 11413-20, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25203482

RESUMO

Logistic challenges make direct comparisons between laboratory- and field-based investigations into the size-dependent reactivity of nanomaterials difficult. This investigation sought to compare the size-dependent reactivity of nanoparticles in a field setting to a laboratory analog using the specific example of magnetite dissolution. Synthetic magnetite nanoparticles of three size intervals, ∼ 6 nm, ∼ 44 nm, and ∼ 90 nm were emplaced in the subsurface of the USGS research site at the Norman Landfill for up to 30 days using custom-made subsurface nanoparticle holders. Laboratory analog dissolution experiments were conducted using synthetic groundwater. Reaction products were analyzed via TEM and SEM and compared to initial particle characterizations. Field results indicated that an organic coating developed on the particle surfaces largely inhibiting reactivity. Limited dissolution occurred, with the amount of dissolution decreasing as particle size decreased. Conversely, the laboratory analogs without organics revealed greater dissolution of the smaller particles. These results showed that the presence of dissolved organics led to a nearly complete reversal in the size-dependent reactivity trends displayed between the field and laboratory experiments indicating that size-dependent trends observed in laboratory investigations may not be relevant in organic-rich natural systems.


Assuntos
Água Subterrânea/química , Nanopartículas de Magnetita/química , Tamanho da Partícula , Solubilidade , Instalações de Eliminação de Resíduos
18.
Environ Sci Technol ; 46(11): 5824-33, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22533634

RESUMO

The functional gene diversity and structure of microbial communities in a shallow landfill leachate-contaminated aquifer were assessed using a comprehensive functional gene array (GeoChip 3.0). Water samples were obtained from eight wells at the same aquifer depth immediately below a municipal landfill or along the predominant downgradient groundwater flowpath. Functional gene richness and diversity immediately below the landfill and the closest well were considerably lower than those in downgradient wells. Mantel tests and canonical correspondence analysis (CCA) suggested that various geochemical parameters had a significant impact on the subsurface microbial community structure. That is, leachate from the unlined landfill impacted the diversity, composition, structure, and functional potential of groundwater microbial communities as a function of groundwater pH, and concentrations of sulfate, ammonia, and dissolved organic carbon (DOC). Historical geochemical records indicate that all sampled wells chronically received leachate, and the increase in microbial diversity as a function of distance from the landfill is consistent with mitigation of the impact of leachate on the groundwater system by natural attenuation mechanisms.


Assuntos
Bactérias/genética , Genes Bacterianos/genética , Variação Genética , Água Subterrânea/microbiologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Poluentes Químicos da Água/análise , Poluição da Água/análise , Biodegradação Ambiental , Ciclo do Carbono/genética , Análise por Conglomerados , Monitoramento Ambiental , Água Subterrânea/química , Compostos Orgânicos/análise , Enxofre/metabolismo
19.
J Hazard Mater ; 411: 125013, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33482508

RESUMO

Arsenic (As) is a toxic trace element with many sources, including hydrocarbons such as oil, natural gas, oil sands, and oil- and gas-bearing shales. Arsenic from these hydrocarbon sources can be released to the environment through human activities of hydrocarbon production, storage, transportation and use. In addition, accidental release of hydrocarbons to aquifers with naturally occurring (geogenic) As can induce mobilization of As to groundwater through biogeochemical reactions triggered by hydrocarbon biodegradation. In this paper, we review the occurrence of As in different hydrocarbons and the release of As from these sources into the environment. We also examine the occurrence of As in wastes from hydrocarbon production, including produced water and sludge. Last, we discuss the potential for As release related to waste management, including accidental or intentional releases, and recycling and reuse of these wastes.

20.
Front Microbiol ; 12: 752947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938277

RESUMO

The widespread application of directional drilling and hydraulic fracturing technologies expanded oil and gas (OG) development to previously inaccessible resources. A single OG well can generate millions of liters of wastewater, which is a mixture of brine produced from the fractured formations and injected hydraulic fracturing fluids (HFFs). With thousands of wells completed each year, safe management of OG wastewaters has become a major challenge to the industry and regulators. OG wastewaters are commonly disposed of by underground injection, and previous research showed that surface activities at an Underground Injection Control (UIC) facility in West Virginia affected stream biogeochemistry and sediment microbial communities immediately downstream from the facility. Because microbially driven processes can control the fate and transport of organic and inorganic components of OG wastewater, we designed a series of aerobic microcosm experiments to assess the influence of high total dissolved solids (TDS) and two common HFF additives-the biocide 2,2-dibromo-3-nitrilopropionamide (DBNPA) and ethylene glycol (an anti-scaling additive)-on microbial community structure and function. Microcosms were constructed with sediment collected upstream (background) or downstream (impacted) from the UIC facility in West Virginia. Exposure to elevated TDS resulted in a significant decrease in aerobic respiration, and microbial community analysis following incubation indicated that elevated TDS could be linked to the majority of change in community structure. Over the course of the incubation, the sediment layer in the microcosms became anoxic, and addition of DBNPA was observed to inhibit iron reduction. In general, disruptions to microbial community structure and function were more pronounced in upstream and background sediment microcosms than in impacted sediment microcosms. These results suggest that the microbial community in impacted sediments had adapted following exposure to OG wastewater releases from the site. Our findings demonstrate the potential for releases from an OG wastewater disposal facility to alter microbial communities and biogeochemical processes. We anticipate that these studies will aid in the development of useful models for the potential impact of UIC disposal facilities on adjoining surface water and shallow groundwater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA