Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 26(15): 3754-60, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27297568

RESUMO

Inhibition of cyclin dependent kinase 2 (CDK2) in complex with cyclin A in G1/S phase of the cell cycle has been shown to promote selective apoptosis of cancer cells through the E2F1 pathway. An alternative approach to catalytic inhibition is to target the substrate recruitment site also known as the cyclin binding groove (CBG) to generate selective non-ATP competitive inhibitors. The REPLACE strategy has been applied to identify fragment alternatives and substituted benzoic acid derivatives were evaluated as a promising scaffold to present appropriate functionality to mimic key peptide determinants. Fragment Ligated Inhibitory Peptides (FLIPs) are described which potently inhibit both CDK2/cyclin A and CDK4/cyclin D1 and have preliminary anti-tumor activity. A structural rationale for binding was obtained through molecular modeling further demonstrating their potential for further development as next generation non ATP competitive CDK inhibitors.


Assuntos
Benzamidas/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Peptidomiméticos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Benzamidas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Peptidomiméticos/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
2.
Eur J Med Chem ; 227: 113926, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34735919

RESUMO

Polo-like kinase 1 (PLK1) is a serine/threonine-protein kinase involved in cell cycle regulation and mitotic progression. Studies have shown that PLK1 is upregulated in many tumors and high levels are adversely related to a poor prognosis. Knocking down or inhibiting PLK1 results in synthetic lethality in PTEN deficient prostate tumors and Kras mutant colorectal tumors, further validating PLK1 as an oncotarget. Substrate recognition by PLK1 occurs through the Polo-Box Domain (PBD), which is a phospho-peptide binding site also responsible for subcellular localization. Much effort has been directed to target this kinase therapeutically through the ATP-binding site, and a few such inhibitors have advanced to clinical trials however with limited clinical efficacy. Moreover, it has been shown that a point mutation in PLK1 (C67V) confers dramatic cellular resistance to catalytic site inhibitors. An alternative approach to target PLK1 potently and selectively is through the PBD to block its protein-protein interactions. Through the REPLACE strategy, for converting peptide inhibitors into more drug-like non peptidic compounds, a PBD targeting compound series ("ABBAs"), has been identified and the key determinants of potency and selectivity elucidated through structure-activity relationship studies. In cellular experiments, the ABBAs were shown to lead to profound effects on the cell cycle, to inhibit tumor proliferation and overcome resistance of cells expressing the PLK1 C67V mutant to ATP-based inhibitors. These non-ATP competitive inhibitors of PLK1 were also used chemical biology probes to investigate the gene regulatory effects of PLK1, known to act on transcription factors such as p53.


Assuntos
Trifosfato de Adenosina/farmacologia , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Trifosfato de Adenosina/síntese química , Trifosfato de Adenosina/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Relação Estrutura-Atividade , Quinase 1 Polo-Like
3.
J Med Chem ; 58(1): 433-42, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25454794

RESUMO

The cyclin groove is an important recognition site for substrates of the cell cycle cyclin dependent kinases and provides an opportunity for highly selective inhibition of kinase activity through a non-ATP competitive mechanism. The key peptide residues of the cyclin binding motif have been studied in order to precisely define the structure-activity relationship for CDK kinase inhibition. Through this information, new insights into the interactions of peptide CDK inhibitors with key subsites of the cyclin binding groove provide for the replacement of binding determinants with more druglike functionality through REPLACE, a strategy for the iterative conversion of peptidic blockers of protein-protein interactions into pharmaceutically relevant compounds. As a result, REPLACE is further exemplified in combining optimized peptidic sequences with effective N-terminal capping groups to generate more stable compounds possessing antitumor activity consistent with on-target inhibition of cell cycle CDKs. The compounds described here represent prototypes for a next generation of kinase therapeutics with high efficacy and kinome selectivity, thus avoiding problems observed with first generation CDK inhibitors.


Assuntos
Antineoplásicos/química , Quinases Ciclina-Dependentes/química , Ciclinas/química , Peptídeos/química , Inibidores de Proteínas Quinases/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
4.
Expert Opin Drug Discov ; 9(7): 773-89, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24819909

RESUMO

INTRODUCTION: Polo-like kinase (PLK)1 is the most studied of the PLK family and is a serine/threonine kinase that plays pivotal roles in many aspects of mitosis and hence its deregulation is prevalent in various malignant tumor types. AREAS COVERED: In this review, the authors discuss the relevancy of PLK1 and other PLK members as oncology targets in light of known roles of these kinases and the observed phenotypic consequence of downregulating their activity, depending on how they are targeted. Furthermore, they also discuss the pathways mutated in cancer that have been shown to enhance sensitivity toward PLK1 inhibitors in the context of tumor types that possess these molecular defects. They also summarize preclinical and clinical investigations that have been undertaken for both ATP and non-ATP competitive inhibitors. EXPERT OPINION: PLKs 2, 3 and 5 are primarily linked with tumor suppressor functions and as PLK1 is the most validated anticancer drug target, selective inhibitors for its activities are most likely to result in effective therapeutics with reduced side effects. In this regard, the polo box domain can be targeted to generate selective inhibitors of PLK1 while preventing inhibition of kinases outside of this family. Recent studies confirming the synthetic lethality of other molecular defects with PLK1 can be exploited to obtain tumor selective apoptosis in p53, KRAS and PTEN mutant cancers.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA