Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 38(41): 8723-8736, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30143572

RESUMO

Traumatic brain injury (TBI) patients often exhibit slowed information processing speed that can underlie diverse symptoms. Processing speed depends on neural circuit function at synapses, in the soma, and along axons. Long axons in white matter (WM) tracts are particularly vulnerable to TBI. We hypothesized that disrupted axon-myelin interactions that slow or block action potential conduction in WM tracts may contribute to slowed processing speed after TBI. Concussive TBI in male/female mice was used to produce traumatic axonal injury in the corpus callosum (CC), similar to WM pathology in human TBI cases. Compound action potential velocity was slowed along myelinated axons at 3 d after TBI with partial recovery by 2 weeks, suggesting early demyelination followed by remyelination. Ultrastructurally, dispersed demyelinated axons and disorganized myelin attachment to axons at paranodes were apparent within CC regions exhibiting traumatic axonal injury. Action potential conduction is exquisitely sensitive to paranode abnormalities. Molecular identification of paranodes and nodes of Ranvier detected asymmetrical paranode pairs and abnormal heminodes after TBI. Fluorescent labeling of oligodendrocyte progenitors in NG2CreER;mTmG mice showed increased synthesis of new membranes extended along axons to paranodes, indicating remyelination after TBI. At later times after TBI, an overall loss of conducting axons was observed at 6 weeks followed by CC atrophy at 8 weeks. These studies identify a progression of both myelinated axon conduction deficits and axon-myelin pathology in the CC, implicating WM injury in impaired information processing at early and late phases after TBI. Furthermore, the intervening recovery reveals a potential therapeutic window.SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) is a major global health concern. Across the spectrum of TBI severities, impaired information processing can contribute to diverse functional deficits that underlie persistent symptoms. We used experimental TBI to exploit technical advantages in mice while modeling traumatic axonal injury in white matter tracts, which is a key pathological feature of human TBI. A combination of approaches revealed slowed and failed signal conduction along with damage to the structure and molecular composition of myelinated axons in the white matter after TBI. An early regenerative response was not sustained yet reveals a potential time window for intervention. These insights into white matter abnormalities underlying axon conduction deficits can inform strategies to improve treatment options for TBI patients.


Assuntos
Potenciais de Ação , Axônios/fisiologia , Lesões Encefálicas Traumáticas/fisiopatologia , Bainha de Mielina/fisiologia , Substância Branca/fisiopatologia , Animais , Lesões Encefálicas Traumáticas/patologia , Corpo Caloso/patologia , Corpo Caloso/fisiopatologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Oligodendroglia/patologia , Oligodendroglia/fisiologia , Substância Branca/patologia , Substância Branca/ultraestrutura
2.
Sci Rep ; 9(1): 16406, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712561

RESUMO

Long-term operations carried out at high altitude (HA) by military personnel, pilots, and astronauts may trigger health complications. In particular, chronic exposure to high altitude (CEHA) has been associated with deficits in cognitive function. In this study, we found that mice exposed to chronic HA (5000 m for 12 weeks) exhibited deficits in learning and memory associated with hippocampal function and were linked with changes in the expression of synaptic proteins across various regions of the brain. Specifically, we found decreased levels of synaptophysin (SYP) (p < 0.05) and spinophilin (SPH) (p < 0.05) in the olfactory cortex, post synaptic density-95 (PSD-95) (p < 0.05), growth associated protein 43 (GAP43) (p < 0.05), glial fibrillary acidic protein (GFAP) (p < 0.05) in the cerebellum, and SYP (p < 0.05) and PSD-95 (p < 0.05) in the brainstem. Ultrastructural analyses of synaptic density and morphology in the hippocampus did not reveal any differences in CEHA mice compared to SL mice. Our data are novel and suggest that CEHA exposure leads to cognitive impairment in conjunction with neuroanatomically-based molecular changes in synaptic protein levels and astroglial cell marker in a region specific manner. We hypothesize that these new findings are part of highly complex molecular and neuroplasticity mechanisms underlying neuroadaptation response that occurs in brains when chronically exposed to HA.


Assuntos
Altitude , Astrócitos/fisiologia , Pareamento Cromossômico , Exposição Ambiental , Memória , Animais , Encéfalo/fisiologia , Exposição Ambiental/efeitos adversos , Hipocampo/fisiologia , Camundongos , Plasticidade Neuronal
3.
Exp Neurol ; 311: 293-304, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321497

RESUMO

We sought to understand the mechanisms underlying cognitive deficits that are reported to affect non-native subjects following their prolonged stay and/or work at high altitude (HA). We found that mice exposed to a simulated environment of 5000 m exhibit deficits in hippocampal learning and memory accompanied by abnormalities in brain MR imaging. Exposure (1-8 months) to HA led to an increase in brain ventricular volume, a reduction in relative cerebral blood flow and changes in diffusion tensor imaging (DTI) derived parameters within the hippocampus and corpus callosum. Furthermore, neuropathological examination revealed significant expansion of the neurovascular network, microglia activation and demyelination within the corpus callosum. Electrophysiological recordings from the corpus callosum indicated that axonal excitabilities are increased while refractory periods are longer despite a lack of change in action potential conduction velocities of both myelinated and unmyelinated fibers. Next generation RNA-sequencing identified alterations in hippocampal and amygdala transcriptome signaling pathways linked to angiogenesis, neuroinflammation and myelination. Our findings reveal that exposure to hypobaric-hypoxia triggers maladaptive responses inducing cognitive deficits and suggest potential mechanisms underlying the adverse impacts of staying or traveling at high altitude.


Assuntos
Adaptação Fisiológica/fisiologia , Altitude , Pressão Atmosférica , Circulação Cerebrovascular/fisiologia , Transtornos da Memória/metabolismo , Neurônios/metabolismo , Animais , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/metabolismo , Neocórtex/patologia , Neurônios/patologia , Distribuição Aleatória
4.
Exp Neurol ; 277: 227-243, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26730521

RESUMO

Traumatic brain injury (TBI) is the leading cause of death for persons under the age of 45. Military service members who have served on multiple combat deployments and contact-sport athletes are at particular risk of sustaining repetitive TBI (rTBI). Cognitive and behavioral deficits resulting from rTBI are well documented. Optimal associative LTP, occurring in the CA1 hippocampal Schaffer collateral pathway, is required for both memory formation and retrieval. Surprisingly, ipsilateral Schaffer collateral CA1 LTP evoked by 100 Hz tetanus was enhanced in mice from the 3× closed head injury (3× CHI) treatment group in comparison to LTP in contralateral or 3× Sham CA1 area, and in spite of reduced freezing during contextual fear conditioning at one week following 3× CHI. Electrophysiological activity of CA1 neurons was evaluated with whole-cell patch-clamp recordings. 3× CHI ipsilateral CA1 neurons exhibited significant increases in action potential amplitude and maximum rise and decay slope while the action potential duration was decreased. Recordings of CA1 neuron postsynaptic currents were conducted to detect spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs/sIPSCs) and respective miniature currents (mEPSCs and mIPSCs). In the 3× CHI mice, sEPSCs and sIPSCs in ipsilateral CA1 neurons had an increased frequency of events but decreased amplitudes. In addition, 3× CHI altered the action potential-independent miniature postsynaptic currents. The mEPSCs of ipsilateral CA1 neurons exhibited both an increased frequency of events and larger amplitudes. Moreover, the effect of 3× CHI on mIPSCs was opposite to that of the sIPSCs. Specifically, the frequency of the mIPSCs was decreased while the amplitudes were increased. These results are consistent with a mechanism in which repetitive closed-head injury affects CA1 hippocampal function by promoting a remodeling of excitatory and inhibitory synaptic inputs leading to impairment in hippocampal-dependent tasks.


Assuntos
Traumatismos Cranianos Fechados/patologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Rede Nervosa/fisiopatologia , Células Piramidais/fisiologia , Animais , Condicionamento Psicológico , Modelos Animais de Doenças , Estimulação Elétrica , Medo , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Receptores de AMPA/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/fisiologia
5.
Neuron ; 89(6): 1208-1222, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26924435

RESUMO

Trisomy 21, or Down syndrome (DS), is the most common genetic cause of developmental delay and intellectual disability. To gain insight into the underlying molecular and cellular pathogenesis, we conducted a multi-region transcriptome analysis of DS and euploid control brains spanning from mid-fetal development to adulthood. We found genome-wide alterations in the expression of a large number of genes, many of which exhibited temporal and spatial specificity and were associated with distinct biological processes. In particular, we uncovered co-dysregulation of genes associated with oligodendrocyte differentiation and myelination that were validated via cross-species comparison to Ts65Dn trisomy mice. Furthermore, we show that hypomyelination present in Ts65Dn mice is in part due to cell-autonomous effects of trisomy on oligodendrocyte differentiation and results in slower neocortical action potential transmission. Together, these results identify defects in white matter development and function in DS, and they provide a transcriptional framework for further investigating DS neuropathogenesis.


Assuntos
Encéfalo , Diferenciação Celular/genética , Síndrome de Down/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Bainha de Mielina/metabolismo , Oligodendroglia/patologia , Potenciais de Ação/genética , Adolescente , Adulto , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Diferenciação Celular/fisiologia , Criança , Pré-Escolar , Cromossomos Humanos Par 17/genética , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/fisiopatologia , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Transgênicos , Mosaicismo , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Condução Nervosa/genética , Mudanças Depois da Morte , Trissomia/genética , Substância Branca/patologia , Substância Branca/ultraestrutura , Adulto Jovem
6.
Physiol Rep ; 3(12)2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26702072

RESUMO

All individuals with Down syndrome (DS) have a varying but significant degree of cognitive disability. Although hippocampal deficits clearly play an important role, behavioral studies also suggest that deficits within the neocortex contribute to somatosensory deficits and impaired cognition in DS. Using thalamocortical slices from the Ts65Dn mouse model of DS, we investigated the intrinsic and network properties of regular spiking neurons within layer 4 of the somatosensory cortex. In these neurons, the membrane capacitance was increased and specific membrane resistance decreased in slices from Ts65Dn mice. Examination of combined active and passive membrane properties suggests that trisomic layer 4 neurons are less excitable than those from euploid mice. The frequencies of excitatory and inhibitory spontaneous synaptic activities were also reduced in Ts65Dn neurons. With respect to network activity, spontaneous network oscillations (Up states) were shorter and less numerous in the neocortex from Ts65Dn mice when compared to euploid. Up states evoked by electrical stimulation of the ventrobasal nucleus (VBN) of the thalamus were similarly affected in Ts65Dn mice. Additionally, monosynaptic EPSCs and polysynaptic IPSCs evoked by VBN stimulation were significantly delayed in layer 4 regular spiking neurons from Ts65Dn mice. These results indicate that, in the Ts65Dn model of DS, the overall electrophysiological properties of neocortical neurons are altered leading to aberrant network activity within the neocortex. Similar changes in DS individuals may contribute to sensory and cognitive dysfunction and therefore may implicate new targets for cognitive therapies in this developmental disorder.

7.
Physiol Behav ; 143: 158-65, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25647362

RESUMO

The interplay of environmental and genetic factors may lead to a spectrum of physiological and behavioral outcomes. How environmental stress factors interact with the diverse mouse genomes is still poorly understood and elucidating the underlying interactions requires specific stress models that can target integrated physiological systems. Here, we employ behavioral tests and whole-body plethysmography to examine the effects of 12 weeks of simulated high altitude (HA) exposure on two inbred mouse strains, BALBc and C57Bl6. We find that HA induced- weight loss recovers at significantly different rates in these two strains. Even at 12 weeks, however, both strains fail to reach body weight levels of controls. Performance on two motor tasks, rotarod and treadmill, improve with HA exposure but more prominently in BALBc mice. Whole-body plethysmography outcomes indicate that compensation to chronic HA includes increased respiratory frequencies and tidal volumes in both strains. However, the effects on tidal volume are significantly greater in BALBc mice and showed a biphasic course. Whole- body metabolic rates are also increased in both strains with prolonged HA exposure, but were more pronounced in BALBc mice suggestive of less successful adaptation in this strain. These adaptations occur in the absence of gross pathological changes in all major organs. Together these results indicate that chronic HA exposure results in environmental stressors that impact the specific physiological responses of BALBc more than C57Bl6 mice. Thus, these strains provide a promising platform for investigating how genetic backgrounds can differentially reinforce the effects of long-lasting environmental stressors and their potential to interact with psychological stressors.


Assuntos
Adaptação Fisiológica , Doença da Altitude/metabolismo , Doença da Altitude/fisiopatologia , Condicionamento Físico Animal/métodos , Especificidade da Espécie , Doença da Altitude/reabilitação , Animais , Teste de Esforço , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Atividade Motora , Consumo de Oxigênio , Pletismografia , Respiração , Fatores de Tempo
8.
Exp Neurol ; 233(2): 749-57, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22178330

RESUMO

GABAergic dysfunction is implicated in hippocampal deficits of the Ts65Dn mouse model of Down syndrome (DS). Since Ts65Dn mice overexpress G-protein coupled inward-rectifying potassium (GIRK2) containing channels, we sought to evaluate whether increased GABAergic function disrupts the functioning of hippocampal circuitry. After confirming that GABA(B)/GIRK current density is significantly elevated in Ts65Dn CA1 pyramidal neurons, we compared monosynaptic inhibitory inputs in CA1 pyramidal neurons in response to proximal (stratum radiatum; SR) and distal (stratum lacunosum moleculare; SLM) stimulation of diploid and Ts65Dn acute hippocampal slices. Synaptic GABA(B) and GABA(A) mediated currents evoked by SR stimulation were generally unaffected in Ts65Dn CA1 neurons. However, the GABA(B)/GABA(A) ratios evoked by stimulation within the SLM of Ts65Dn hippocampus were significantly larger in magnitude, consistent with increased GABA(B)/GIRK currents after SLM stimulation. These results indicate that GIRK overexpression in Ts65Dn has functional consequences which affect the balance between GABA(B) and GABA(A) inhibition of CA1 pyramidal neurons, most likely in a pathway specific manner, and may contribute to cognitive deficits reported in these mice.


Assuntos
Região CA1 Hipocampal/fisiologia , Modelos Animais de Doenças , Síndrome de Down/fisiopatologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Inibição Neural/genética , Animais , Síndrome de Down/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/biossíntese , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Receptores de GABA-A/fisiologia , Receptores de GABA-B/fisiologia , Transdução de Sinais/genética
9.
Adv Pharmacol ; 58: 397-426, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20655490

RESUMO

Down syndrome (DS) results from the presence of an extra copy of genes on the long-arm of chromosome 21. Aberrant expression of these trisomic genes leads to widespread neurological changes that vary in their severity. However, how the presence of extra genes affects the physiological and behavioral phenotypes associated with DS is not well understood. The most likely cause of the complex DS phenotypes is the overexpression of dosage-sensitive genes. However, other factors, such as the complex interactions between gene products as proteins and noncoding RNAs, certainly play significant roles contributing to the spectrum of severity. Here we will review evidence regarding how the overexpression of one particular gene encoding for G-protein-activated inward rectifying potassium type 2 (GIRK2) channel subunit and its coupling to GABA(B) receptors may contribute to a range of mental and functional disabilities in DS.


Assuntos
Síndrome de Down/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Receptores de GABA-B/metabolismo , Transdução de Sinais , Animais , Transtornos Cognitivos/complicações , Transtornos Cognitivos/metabolismo , Síndrome de Down/complicações , Síndrome de Down/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos
10.
Nat Neurosci ; 13(8): 927-34, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20639873

RESUMO

Over-inhibition is thought to be one of the underlying causes of the cognitive deficits in Ts65Dn mice, the most widely used model of Down syndrome. We found a direct link between gene triplication and defects in neuron production during embryonic development. These neurogenesis defects led to an imbalance between excitatory and inhibitory neurons and to increased inhibitory drive in the Ts65Dn forebrain. We discovered that Olig1 and Olig2, two genes that are triplicated in Down syndrome and in Ts65Dn mice, were overexpressed in the Ts65Dn forebrain. To test the hypothesis that Olig triplication causes the neurological phenotype, we used a genetic approach to normalize the dosage of these two genes and thereby rescued the inhibitory neuron phenotype in the Ts65Dn brain. These data identify seminal alterations during brain development and suggest a mechanistic relationship between triplicated genes and these brain abnormalities in the Ts65Dn mouse.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encefalopatias/genética , Encéfalo/anormalidades , Síndrome de Down/genética , Proteínas do Tecido Nervoso/genética , Animais , Western Blotting , Encéfalo/citologia , Encéfalo/embriologia , Encefalopatias/fisiopatologia , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Imuno-Histoquímica , Hibridização In Situ , Potenciais Pós-Sinápticos Inibidores/fisiologia , Camundongos , Microscopia Confocal , Neurônios/citologia , Fator de Transcrição 2 de Oligodendrócitos , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
J Neurophysiol ; 97(3): 2148-58, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17202239

RESUMO

Using the rat vibrissa system, we provide evidence for a novel mechanism for the generation of movement. Like other central pattern generators (CPGs) that underlie many movements, the rhythm generator for whisking can operate without cortical inputs or sensory feedback. However, unlike conventional mammalian CPGs, vibrissa motoneurons (vMNs) actively participate in the rhythmogenesis by converting tonic serotonergic inputs into the patterned motor output responsible for movement of the vibrissae. We find that, in vitro, a serotonin receptor agonist, alpha-Me-5HT, facilitates a persistent inward current (PIC) and evokes rhythmic firing in vMNs. Within each motoneuron, increasing the concentration of alpha-Me-5HT significantly increases the both the magnitude of the PIC and the motoneuron's firing rate. Riluzole, which selectively suppresses the Na(+) component of PICs at low concentrations, causes a reduction in both of these phenomena. The magnitude of this reduction is directly correlated with the concentration of riluzole. The joint effects of riluzole on PIC magnitude and firing rate in vMNs suggest that the two are causally related. In vivo we find that the tonic activity of putative serotonergic premotoneurons is positively correlated with the frequency of whisking evoked by cortical stimulation. Taken together, these results support the hypothesized novel mammalian mechanism for movement generation in the vibrissa motor system where vMNs actively participate in the rhythmogenesis in response to tonic drive from serotonergic premotoneurons.


Assuntos
Tronco Encefálico/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Periodicidade , Vibrissas/inervação , Animais , Animais Recém-Nascidos , Tronco Encefálico/citologia , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Interações Medicamentosas , Estimulação Elétrica , Eletromiografia , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Neurônios Motores/efeitos da radiação , Rede Nervosa/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley , Serotonina/análogos & derivados , Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
12.
J Neurophysiol ; 96(1): 209-17, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16641387

RESUMO

Whether the motor cortex regulates voluntary movements by generating the motor pattern directly or by acting through subcortical central pattern generators (CPGs) remains a central question in motor control. Using the rat whisker system, an important model system of mammalian motor control, we develop an anesthetized preparation to investigate the interaction between the motor cortex and a whisking CPG. Using this model we investigate the involvement of a serotonergic component of the whisking CPG in determining whisking kinematics and the mechanisms through which drive from the CPG is converted into movements by vibrissa motor units. Consistent with an action of the vibrissa motor cortex (vMCx) on a subcortical CPG, the frequency of whisking evoked by intracortical microstimulation (ICMS) of vMCx differed significantly from the stimulation frequency, whereas whisking onset latencies correlated negatively with stimulation intensity. Further, ICMS-evoked whisking was suppressed by a serotonin receptor antagonist, supporting previous findings that the whisking CPG contains a significant serotonergic component. The amplitude of ICMS-evoked whisking was correlated with the number of active motor units-isolated from vibrissal EMGs or recorded directly from vibrissa motoneurons-and their activity level. In addition, whisking frequency was correlated with the firing rate of these motoneurons. These findings support the hypothesis that vMCx regulates whisking through its actions on a subcortical CPG.


Assuntos
Comportamento Animal/fisiologia , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Periodicidade , Vibrissas/fisiologia , Animais , Fenômenos Biomecânicos , Estimulação Elétrica , Eletromiografia , Feminino , Neurônios Motores/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Serotonina/fisiologia , Serotonina/fisiologia
13.
J Neurophysiol ; 95(2): 1274-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16251259

RESUMO

Rats characteristically generate stereotyped exploratory (5-12 Hz) whisker movements, which can also be adaptively modulated. Here we tested the hypothesis that the vibrissal representation in motor cortex (vMCx) initiates and modulates whisking by acting on a subcortical whisking central pattern generator (CPG). We recorded local field potentials (LFPs) in vMCx of behaving Sprague-Dawley rats while monitoring whisking behavior through mystacial electromyograms (EMGs). Recordings were made during free exploration, under body restraint, or in a head-fixed animal. LFP activity increased significantly prior to the onset of a whisking epoch and ended prior to the epoch's termination. In addition, shifts in whisking kinematics within a whisk epoch were often reflected in changes in LFP activity. These data support the hypothesis that vMCx may initiate and modulate whisking behavior through its action on a subcortical CPG.


Assuntos
Relógios Biológicos/fisiologia , Potencial Evocado Motor/fisiologia , Memória/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Contração Muscular/fisiologia , Neurônios Aferentes/fisiologia , Vibrissas/fisiologia , Potenciais de Ação/fisiologia , Animais , Sinais (Psicologia) , Feminino , Periodicidade , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA