Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 60(15): 1178-1190, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33749246

RESUMO

Phospholipase A/acyltransferase 3 (PLAAT3) and PLAAT4 are enzymes involved in the synthesis of bioactive lipids. Despite sequential and structural similarities, the two enzymes differ in activity and specificity. The relation between the activity and dynamics of the N-terminal domains of PLAAT3 and PLAAT4 was studied. PLAAT3 has a much higher melting temperature and exhibits less nanosecond and millisecond dynamics in the active site, in particular in loop L2(B6), as shown by NMR spectroscopy and molecular dynamics calculations. Swapping the L2(B6) loops between the two PLAAT enzymes results in strongly increased phospholipase activity in PLAAT3 but no reduction in PLAAT4 activity, indicating that this loop contributes to the low activity of PLAAT3. The results show that, despite structural similarity, protein dynamics differ substantially between the PLAAT variants, which can help to explain the activity and specificity differences.


Assuntos
Fosfolipases/metabolismo , Domínio Catalítico , Simulação de Dinâmica Molecular , Fosfolipases/química , Especificidade por Substrato , Temperatura
2.
Chembiochem ; 22(10): 1743-1749, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33534182

RESUMO

Glycoside hydrolases (GHs) are attractive tools for multiple biotechnological applications. In conjunction with their hydrolytic function, GHs can perform transglycosylation under specific conditions. In nature, oligosaccharide synthesis is performed by glycosyltransferases (GTs); however, the industrial use of GTs is limited by their instability in solution. A key difference between GTs and GHs is the flexibility of their binding site architecture. We have used the xylanase from Bacillus circulans (BCX) to study the interplay between active-site flexibility and transglycosylation. Residues of the BCX "thumb" were substituted to increase the flexibility of the enzyme binding site. Replacement of the highly conserved residue P116 with glycine shifted the balance of the BCX enzymatic reaction toward transglycosylation. The effects of this point mutation on the structure and dynamics of BCX were investigated by NMR spectroscopy. The P116G mutation induces subtle changes in the configuration of the thumb and enhances the millisecond dynamics of the active site. Based on our findings, we propose the remodelling of the GH enzymes glycon site flexibility as a strategy to improve the transglycosylation efficiency of these biotechnologically important catalysts.


Assuntos
Proteínas de Bactérias/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Bacillus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Glicosilação , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Temperatura de Transição
3.
FEBS J ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185686

RESUMO

Bacillus circulans xylanase (BcX) from the glycoside hydrolase family 11 degrades xylan through a retaining, double-displacement mechanism. The enzyme is thought to hydrolyze glycosidic bonds in a processive manner and has a large, active site cleft, with six subsites allowing the binding of six xylose units. Such an active site architecture suggests that oligomeric xylose substrates can bind in multiple ways. In the crystal structure of the catalytically inactive variant BcX E78Q, the substrate xylotriose is observed in the active site, as well as bound to the known secondary binding site and a third site on the protein surface. Nuclear magnetic resonance (NMR) titrations with xylose oligomers of different lengths yield nonlinear chemical shift trajectories for active site nuclei resonances, indicative of multiple binding orientations for these substrates for which binding and dissociation are in fast exchange on the NMR timescale, exchanging on the micro- to millisecond timescale. Active site binding can be modeled with a 2 : 1 model with dissociation constants in the low and high millimolar range. Extensive mutagenesis of active site residues indicates that tight binding occurs in the glycon binding site and is stabilized by Trp9 and the thumb region. Mutations F125A and W71A lead to large structural rearrangements. Binding at the glycon site is sensed throughout the active site, whereas the weak binding mostly affects the aglycon site. The interactions with the two active site locations are largely independent of each other and of binding at the secondary binding site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA