Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2312172121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502705

RESUMO

The endoplasmic reticulum (ER) forms an interconnected network of tubules stretching throughout the cell. Understanding how ER functionality relies on its structural organization is crucial for elucidating cellular vulnerability to ER perturbations, which have been implicated in several neuronal pathologies. One of the key functions of the ER is enabling Ca[Formula: see text] signaling by storing large quantities of this ion and releasing it into the cytoplasm in a spatiotemporally controlled manner. Through a combination of physical modeling and live-cell imaging, we demonstrate that alterations in ER shape significantly impact its ability to support efficient local Ca[Formula: see text] releases, due to hindered transport of luminal content within the ER. Our model reveals that rapid Ca[Formula: see text] release necessitates mobile luminal buffer proteins with moderate binding strength, moving through a well-connected network of ER tubules. These findings provide insight into the functional advantages of normal ER architecture, emphasizing its importance as a kinetically efficient intracellular Ca[Formula: see text] delivery system.


Assuntos
Retículo Endoplasmático , Transdução de Sinais , Retículo Endoplasmático/metabolismo , Neurônios/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio
2.
Cell Rep ; 43(7): 114357, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38955182

RESUMO

Cell functions rely on intracellular transport systems distributing bioactive molecules with high spatiotemporal accuracy. The endoplasmic reticulum (ER) tubular network constitutes a system for delivering luminal solutes, including Ca2+, across the cell periphery. How the ER structure enables this nanofluidic transport system is unclear. Here, we show that ER membrane-localized reticulon 4 (RTN4/Nogo) is sufficient to impose neurite outgrowth inhibition in human cortical neurons while acting as an ER morphoregulator. Improving ER transport visualization methodologies combined with optogenetic Ca2+ dynamics imaging and in silico modeling, we observed that ER luminal transport is modulated by ER tubule narrowing and dilation, proportional to the amount of RTN4. Excess RTN4 limited ER luminal transport and Ca2+ release, while RTN4 elimination reversed the effects. The described morphoregulatory effect of RTN4 defines the capacity of the ER for peripheral Ca2+ delivery for physiological releases and thus may constitute a mechanism for controlling the (re)generation of neurites.


Assuntos
Cálcio , Retículo Endoplasmático , Neurônios , Proteínas Nogo , Retículo Endoplasmático/metabolismo , Proteínas Nogo/metabolismo , Humanos , Cálcio/metabolismo , Neurônios/metabolismo , Neuritos/metabolismo , Transporte Biológico , Crescimento Neuronal/efeitos dos fármacos
3.
Acta Neuropathol Commun ; 8(1): 127, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762772

RESUMO

Sandhoff disease (SD) is a lysosomal storage disease, caused by loss of ß-hexosaminidase (HEX) activity resulting in the accumulation of ganglioside GM2. There are shared features between SD and Parkinson's disease (PD). α-synuclein (aSYN) inclusions, the diagnostic hallmark sign of PD, are frequently found in the brain in SD patients and HEX knockout mice, and HEX activity is reduced in the substantia nigra in PD. In this study, we biochemically demonstrate that HEX deficiency in mice causes formation of high-molecular weight (HMW) aSYN and ubiquitin in the brain. As expected from HEX enzymatic function requirements, overexpression in vivo of HEXA and B combined, but not either of the subunits expressed alone, increased HEX activity as evidenced by histochemical assays. Biochemically, such HEX gene expression resulted in increased conversion of GM2 to its breakdown product GM3. In a neurodegenerative model of overexpression of aSYN in rats, increasing HEX activity by AAV6 gene transfer in the substantia nigra reduced aSYN embedding in lipid compartments and rescued dopaminergic neurons from degeneration. Overall, these data are consistent with a paradigm shift where lipid abnormalities are central to or preceding protein changes typically associated with PD.


Assuntos
Neurônios Dopaminérgicos/patologia , Gangliosídeos/metabolismo , alfa-Sinucleína/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Feminino , Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Doença de Sandhoff/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA