Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 14: 223, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23557257

RESUMO

BACKGROUND: Although the genome sequence of the protozoan parasite Leishmania major was determined several years ago, the knowledge of its transcriptome was incomplete, both regarding the real number of genes and their primary structure. RESULTS: Here, we describe the first comprehensive transcriptome analysis of a parasite from the genus Leishmania. Using high-throughput RNA sequencing (RNA-seq), a total of 10285 transcripts were identified, of which 1884 were considered novel, as they did not match previously annotated genes. In addition, our data indicate that current annotations should be modified for many of the genes. The detailed analysis of the transcript processing sites revealed extensive heterogeneity in the spliced leader (SL) and polyadenylation addition sites. As a result, around 50% of the genes presented multiple transcripts differing in the length of the UTRs, sometimes in the order of hundreds of nucleotides. This transcript heterogeneity could provide an additional source for regulation as the different sizes of UTRs could modify RNA stability and/or influence the efficiency of RNA translation. In addition, for the first time for the Leishmania major promastigote stage, we are providing relative expression transcript levels. CONCLUSIONS: This study provides a concise view of the global transcriptome of the L. major promastigote stage, providing the basis for future comparative analysis with other development stages or other Leishmania species.


Assuntos
Perfilação da Expressão Gênica , Leishmania major/crescimento & desenvolvimento , Leishmania major/genética , Estágios do Ciclo de Vida/genética , Anotação de Sequência Molecular , Análise de Sequência de RNA , Sequência de Aminoácidos , Animais , Sequência de Bases , Dados de Sequência Molecular , Poliadenilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
BMC Microbiol ; 12: 265, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23164453

RESUMO

BACKGROUND: The morphogenesis of herpes simplex virus type 1 (HSV-1) comprises several events, of which some are not completely understood. It has been shown that HSV-1 glycoproteins accumulate in the trans-Golgi network (TGN) and in TGN-derived vesicles. It is also accepted that HSV-1 acquires its final morphology through a secondary envelopment by budding into TGN-derived vesicles coated with viral glycoproteins and tegument proteins. Nevertheless, several aspects of this process remain elusive. The small GTPase Rab27a has been implicated in regulated exocytosis, and it seems to play a key role in certain membrane trafficking events. Rab27a also seems to be required for human cytomegalovirus assembly. However, despite the involvement of various Rab GTPases in HSV-1 envelopment, there is, to date, no data reported on the role of Rab27a in HSV-1 infection. RESULTS: Herein, we show that Rab27a colocalized with GHSV-UL46, a tegument-tagged green fluorescent protein-HSV-1, in the TGN. In fact, this small GTPase colocalized with viral glycoproteins gH and gD in that compartment. Functional analysis through Rab27a depletion showed a significant decrease in the number of infected cells and viral production in Rab27a-silenced cells. CONCLUSIONS: Altogether, our results indicate that Rab27a plays an important role in HSV-1 infection of oligodendrocytic cells.


Assuntos
Herpesvirus Humano 1/patogenicidade , Interações Hospedeiro-Patógeno , Oligodendroglia/virologia , Proteínas rab de Ligação ao GTP/metabolismo , Antígenos Virais/metabolismo , Humanos , Ligação Proteica , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Proteínas rab27 de Ligação ao GTP , Rede trans-Golgi/metabolismo , Rede trans-Golgi/virologia
3.
PLoS One ; 11(1): e0147885, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26807581

RESUMO

Herpes simplex virus type 1 (HSV-1) has the ability to enter many different hosts and cell types by several strategies. This highly prevalent alphaherpesvirus can enter target cells using different receptors and different pathways: fusion at a neutral pH, low-pH-dependent and low-pH-independent endocytosis. Several cell receptors for viral entry have been described, but several observations suggest that more receptors for HSV-1 might exist. In this work, we propose a novel role for the proteolipid protein (PLP) in HSV-1 entry into the human oligodendrocytic cell line HOG. Cells transfected with PLP-EGFP showed an increase in susceptibility to HSV-1. Furthermore, the infection of HOG and HOG-PLP transfected cells with the R120vGF virus--unable to replicate in ICP4-defficient cells--showed an increase in viral signal in HOG-PLP, suggesting a PLP involvement in viral entry. In addition, a mouse monoclonal antibody against PLP drastically inhibited HSV-1 entry into HOG cells. PLP and virions colocalized in confocal immunofluorescence images, and in electron microscopy images, which suggest that PLP acts at the site of entry into HOG cells. Taken together these results suggest that PLP may be involved in HSV-1 entry in human oligodendrocytic cells.


Assuntos
Herpesvirus Humano 1/metabolismo , Proteína Proteolipídica de Mielina/metabolismo , Oligodendroglia/metabolismo , Internalização do Vírus , Animais , Células CHO , Linhagem Celular , Cricetulus , Humanos , Oligodendroglia/virologia
4.
PLoS One ; 9(2): e89141, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551233

RESUMO

Herpes simplex type 1 (HSV-1) is a neurotropic virus that infects many types of cells. Previous studies have demonstrated that oligodendrocytic cells are highly susceptible to HSV-1 infection. Here we analysed HSV-1 infection of a human oligodendrocytic cell line, HOG, and oligodendrocyte precursor cells (OPCs) cultured under growth or differentiation conditions. In addition to cell susceptibility, the role of the major cell receptors for viral entry was assessed. Our results revealed that OPCs and HOG cells cultured under differentiation conditions became more susceptible to HSV-1. On the other hand, viral infection induced morphological changes corresponding to differentiated cells, suggesting that HSV-1 might be inducing cell differentiation. We also observed colocalization of HVEM and nectin-1 with viral particles, suggesting that these two major HSV-1 receptors are functional in HOG cells. Finally, electron microscopy assays indicated that HSV-1 may be also entering OLs by macropinocytosis depending on their differentiation stage. In addition, vesicles containing intracellular enveloped virions observed in differentiated cells point to an endocytic mechanism of virus entry. All these data are indicative of diverse entry pathways dependent on the maturation stage of OLs.


Assuntos
Diferenciação Celular/genética , Herpesvirus Humano 1/genética , Interações Hospedeiro-Patógeno , Oligodendroglia/virologia , Vírion/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Proliferação de Células , Endocitose , Regulação da Expressão Gênica , Herpesvirus Humano 1/metabolismo , Humanos , Nectinas , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Vírion/metabolismo , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA