Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708306

RESUMO

Background: Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated to asbestos exposure. One of the most frequent genetic alteration in MPM patients is CDKN2A/ARF loss, leading to aberrant activation of the Rb pathway. In MPM cells, we previously demonstrated the therapeutic efficacy of targeting this signaling with the CDK4/6 inhibitor palbociclib in combination with PI3K/mTOR inhibitors. Here, we investigated whether such combination may have an impact on cell energy metabolism. Methods: The study was performed in MPM cells of different histotypes; metabolic analyses were conducted by measuring GLUT-1 expression and glucose uptake/consumption, and by SeaHorse technologies. Results: MPM cell models differed for their ability to adapt to metabolic stress conditions, such as glucose starvation and hypoxia. Independently of these differences, combined treatments with palbociclib and PI3K/mTOR inhibitors inhibited cell proliferation more efficaciously than single agents. The drugs alone reduced glucose uptake/consumption as well as glycolysis, and their combination further enhanced these effects under both normoxic and hypoxic conditions. Moreover, the drug combinations significantly impaired mitochondrial respiration as compared with individual treatments. These metabolic effects were mediated by the concomitant inhibition of Rb/E2F/c-myc and PI3K/AKT/mTOR signaling. Conclusions: Dual blockade of glycolysis and respiration contributes to the anti-tumor efficacy of palbociclib-PI3K/mTOR inhibitors combination.


Assuntos
Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Metabolismo Energético/efeitos dos fármacos , Mesotelioma Maligno/metabolismo , Neoplasias Pleurais/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Linhagem Celular Tumoral , Glicólise/efeitos dos fármacos , Humanos , Mesotelioma Maligno/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Piperazinas/farmacologia , Neoplasias Pleurais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
2.
Tumour Biol ; 39(4): 1010428317695023, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28378631

RESUMO

The importance of the immune system as a potent anti-tumor defense has been consolidated in recent times, and novel immune-related therapies are today demonstrating a strong clinical benefit in the setting of several solid neoplasms. Tumor-infiltrating lymphocytes reflect the attempt of the host to eradicate malignancies, and during the last decades, they have been shown to possess an interesting prognostic utility for breast cancer, especially in case of HER2 positive and triple-negative molecular subtypes. In parallel, the clinical evaluation of tumor-infiltrating lymphocytes has been shown to effectively predict treatment outcomes in both neoadjuvant and adjuvant settings. Currently, tumor-infiltrating lymphocytes are promising further predictive utility in view of novel immune-related therapeutic strategies which are coming into the clinical setting launching a solid rationale for the future next-generation treatment options. In this scenario, tumor-infiltrating lymphocytes might represent an important resource for the selection of the most appropriate therapeutic strategy, as well as further evaluations of the molecular mechanisms underlying tumor-infiltrating lymphocytes and the immunoediting process would eventually provide new insights to augment therapeutic success. Considering these perspectives, we review the potential utility of tumor-infiltrating lymphocytes in the definition of breast cancer prognosis and in the prediction of treatment outcomes, along with the new promising molecular-based therapeutic discoveries.


Assuntos
Neoplasias da Mama/terapia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias da Mama/classificação , Neoplasias da Mama/imunologia , Feminino , Humanos , Terapia Neoadjuvante , Prognóstico , Resultado do Tratamento
3.
Mol Cancer ; 13: 143, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24898067

RESUMO

BACKGROUND: HER-2 represents a relatively new therapeutic target for non small cell lung cancer (NSCLC) patients. The incidence for reported HER-2 overexpression/amplification/mutations ranges from 2 to 20% in NSCLC. Moreover, HER-2 amplification is a potential mechanism of resistance to tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR-TKI) (about 10% of cases). T-DM1, trastuzumab emtansine is an antibody-drug conjugate composed by the monoclonal antibody trastuzumab and the microtubule polymerization inhibitor DM1. The activity of T-DM1 has been studied in breast cancer but the role of T-DM1 in lung cancer remains unexplored. METHODS: Antiproliferative and proapoptotic effects of T-DM1 have been investigated in different NSCLC cell lines by MTT, crystal violet staining, morphological study and Western blotting. HER-2 expression and cell cycle were evaluated by flow cytometry and Western blotting. Antibody dependent cell cytotoxicity (ADCC) was measured with a CytoTox assay. Xenografted mice model has been generated using a NSCLC cell line to evaluate the effect of T-DM1 on tumor growth. Moreover, a morphometric and immunohistochemical analysis of tumor xenografts was conducted. RESULTS: In this study we investigated the effect of T-DM1 in a panel of NSCLC cell lines with different HER-2 expression levels, in H1781 cell line carrying HER-2 mutation and in gefitinib resistant HER-2 overexpressing PC9/HER2cl1 cell clone. T-DM1 efficiently inhibited proliferation with arrest in G2-M phase and induced cell death by apoptosis in cells with a significant level of surface expression of HER-2. Antibody-dependent cytotoxicity assay documented that T-DM1 maintained the same activity of trastuzumab. Our data also suggest that targeting HER-2 with T-DM1 potentially overcomes gefitinib resistance. In addition a correlation between cell density/tumor size with both HER-2 expression and T-DM1 activity was established in vitro and in an in vivo xenograft model. CONCLUSIONS: Our results indicate that targeting HER-2 with T-DM1 may offer a new therapeutic approach in HER-2 over-expressing lung cancers including those resistant to EGFR TKIs.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Imunoconjugados/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Maitansina/análogos & derivados , Receptor ErbB-2/genética , Animais , Anticorpos Monoclonais Humanizados/química , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Gefitinibe , Expressão Gênica , Humanos , Imunoconjugados/química , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Maitansina/química , Maitansina/farmacologia , Camundongos , Camundongos Nus , Quinazolinas/farmacologia , Receptor ErbB-2/metabolismo , Trastuzumab , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Cancer ; 11: 91, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23234355

RESUMO

BACKGROUND: The epidermal growth factor receptor (EGFR) is an established target for anti-cancer treatment in different tumour types. Two different strategies have been explored to inhibit this pivotal molecule in epithelial cancer development: small molecules TKIs and monoclonal antibodies. ErbB/HER-targeting by monoclonal antibodies such as cetuximab and trastuzumab or tyrosine-kinase inhibitors as gefitinib or erlotinib has been proven effective in the treatment of advanced NSCLC. RESULTS: In this study we explored the potential of combining either erlotinib with cetuximab or trastuzumab to improve the efficacy of EGFR targeted therapy in EGFR wild-type NSCLC cell lines. Erlotinib treatment was observed to increase EGFR and/or HER2 expression at the plasma membrane level only in NSCLC cell lines sensitive to the drug inducing protein stabilization. The combined treatment had marginal effect on cell proliferation but markedly increased antibody-dependent, NK mediated, cytotoxicity in vitro. Moreover, in the Calu-3 xenograft model, the combination significantly inhibited tumour growth when compared with erlotinib and cetuximab alone. CONCLUSION: Our results indicate that erlotinib increases surface expression of EGFR and/or HER2 only in EGFR-TKI sensitive NSCLC cell lines and, in turns, leads to increased susceptibility to ADCC both in vitro and in a xenograft models. The combination of erlotinib with monoclonal antibodies represents a potential strategy to improve the treatment of wild-type EGFR NSCLC patients sensitive to erlotinib.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Análise de Variância , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/química , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cetuximab , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/química , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estabilidade Proteica/efeitos dos fármacos , Quinazolinas/administração & dosagem , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Front Oncol ; 10: 563249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072590

RESUMO

Advanced hepatocarcinoma (HCC) is an aggressive malignancy with poor prognosis and limited treatment options. Alterations of the cyclin D-CDK4/6-Rb pathway occur frequently in HCC, providing the rationale for its targeting at least in a molecular subset of HCC. In a panel of HCC cell lines, we investigated whether the CDK4/6 inhibitor palbociclib might improve the efficacy of regorafenib, a powerful multi-kinase inhibitor approved as second-line treatment for advanced HCC after sorafenib failure and currently under clinical investigation as first-line therapy in combination with immunotherapy. In Rb-proficient cells, the simultaneous drug combination, but not the sequential schedules, inhibited cell proliferation, either in short or in long-term experiments, and induced cell death more strongly than individual treatments. Moreover, the combination significantly reduced spheroid cell growth and inhibited cell migration/invasion. The superior efficacy of palbociclib plus regorafenib emerged also under hypoxia and was associated with a significant down-regulation of CDK4/6-Rb-myc and mTORC1/p70S6K signaling. Moreover, regorafenib suppressed palbociclib-induced expression of cyclin D1 contributing to the cytotoxic effects of the combination. Besides these inhibitory effects on cell viability/proliferation, palbociclib and regorafenib reduced glucose uptake, although this effect was dependent on the cell model and on the oxygen availability (normoxia or hypoxia). Palbociclib and regorafenib combination impaired glucose uptake and utilization, down-regulating basal and hypoxia-induced expression of HIF-1α, HIF-2α, GLUT-1, and MCT4 proteins as well as the activity/expression of glycolytic enzymes (HK2, PFKP, aldolase A, PKM2). In addition, regorafenib alone reduced mitochondrial respiration. The combined treatment impaired glucose metabolism and respiration without enhancing the effects of the single agents. Our findings provide pre-clinical evidence for the effectiveness of palbociclib and regorafenib combination in HCC cell models.

6.
Cancers (Basel) ; 13(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374971

RESUMO

Abemaciclib is an inhibitor of cyclin-dependent kinases (CDK) 4 and 6 that inhibits the transition from the G1 to the S phase of the cell cycle by blocking downstream CDK4/6-mediated phosphorylation of Rb. The effects of abemaciclib alone or combined with the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) osimertinib were examined in a panel of PC9 and HCC827 osimertinib-resistant non-small cell lung cancer (NSCLC) cell lines carrying EGFR-dependent or -independent mechanisms of intrinsic or acquired resistance. Differently from sensitive cells, all the resistant cell lines analyzed maintained p-Rb, which may be considered as a biomarker of osimertinib resistance and a potential target for therapeutic intervention. In these models, abemaciclib inhibited cell growth, spheroid formation, colony formation, and induced senescence, and its efficacy was not enhanced in the presence of osimertinib. Interestingly, in osimertinib sensitive PC9, PC9T790M, and H1975 cells the combination of abemaciclib with osimertinib significantly inhibited the onset of resistance in long-term experiments. Our findings provide a preclinical support for using abemaciclib to treat resistance in EGFR mutated NSCLC patients progressed to osimertinib either as single treatment or combined with osimertinib, and suggest the combination of osimertinib with abemaciclib as a potential approach to prevent or delay osimertinib resistance in first-line treatment.

7.
Cancers (Basel) ; 12(3)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178474

RESUMO

Immunotherapy has significantly changed the treatment landscape for advanced non-small-cell lung cancer (NSCLC) with the introduction of drugs targeting programmed cell death protein-1 (PD-1) and programmed cell death ligand-1 (PD-L1). In particular, the addition of the anti-PD-1 antibody pembrolizumab to platinum-pemetrexed chemotherapy resulted in a significantly improved overall survival in patients with non-squamous NSCLC, regardless of PD-L1 expression. In this preclinical study, we investigated whether chemotherapy can modulate PD-L1 expression in non-squamous NSCLC cell lines, thus potentially affecting immunotherapy efficacy. Among different chemotherapeutic agents tested, only pemetrexed increased PD-L1 levels by activating both mTOR/P70S6K and STAT3 pathways. Moreover, it also induced the secretion of cytokines, such as IFN-γ and IL-2, by activated peripheral blood mononuclear cells PBMCs that further stimulated the expression of PD-L1 on tumor cells, as demonstrated in a co-culture system. The anti-PD-1/PD-L1 therapy enhanced T cell-mediated cytotoxicity of NSCLC cells treated with pemetrexed and expressing high levels of PD-L1 in comparison with untreated cells. These data may explain the positive results obtained with pemetrexed-based chemotherapy combined with pembrolizumab in PD-L1-negative NSCLC and can support pemetrexed as one of the preferable chemotherapy partners for immunochemotherapy combination regimens.

8.
Cancers (Basel) ; 11(9)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500143

RESUMO

The recent approval of immune checkpoint inhibitors drastically changed the standard treatments in many advanced cancer patients, but molecular changes within the tumor can prevent the activity of immunotherapy drugs. Thus, the introduction of the inhibitors of the immune checkpoint programmed death-1/programmed death ligand-1 (PD-1/PD-L1), should prompt deeper studies on resistance mechanisms, which can be caused by oncogenic mutations detected in cancer cells. PTEN, a tumor suppressor gene, dephosphorylates the lipid signaling intermediate PIP3 with inhibition of AKT activity, one of the main effectors of the PI3K signaling axis. As a consequence of genetic or epigenetic aberrations, PTEN expression is often altered, with increased activation of PI3K axis. Interestingly, some data confirmed that loss of PTEN expression modified the pattern of cytokine secretion creating an immune-suppressive microenvironment with increase of immune cell populations that can promote tumor progression. Moreover, PTEN loss may be ascribed to reduction of tumor infiltrating lymphocytes (TILs), which can explain the absence of activity of immune checkpoint inhibitors. This review describes the role of PTEN loss as a mechanism responsible for resistance to anti PD-1/PD-L1 treatment. Moreover, combinatorial strategies between PD-1/PD-L1 inhibitors and PI3K/AKT targeting drugs are proposed as a new strategy to overcome resistance to immune checkpoint inhibition.

9.
Sci Rep ; 9(1): 13014, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506466

RESUMO

Triple Negative Breast Cancer (TNBC) is a challenging disease due to the lack of druggable targets; therefore, chemotherapy remains the standard of care and the identification of new targets is a high clinical priority. Alterations in the components of the cell cycle machinery have been frequently reported in cancer; given the success obtained with the CDK4/6 inhibitor palbocicib in ER-positive BC, we explored the potential of combining this drug with chemotherapy in Rb-positive TNBC cell models. The simultaneous combination of palbociclib with paclitaxel exerted an antagonistic effect; by contrast, the sequential treatment inhibited cell proliferation and increased cell death more efficaciously than single treatments. By down-regulating the E2F target c-myc, palbociclib reduced HIF-1α and GLUT-1 expression, and hence glucose uptake and consumption both under normoxic and hypoxic conditions. Importantly, these inhibitory effects on glucose metabolism were enhanced by palbociclib/paclitaxel sequential combination; the superior efficacy of such combination was ascribed to the ability of paclitaxel to inhibit palbociclib-mediated induction of AKT and to further down-regulate the Rb/E2F/c-myc signaling. Our results suggest that the efficacy of standard chemotherapy can be significantly improved by a pre-treatment with palbociclib, thus offering a better therapeutic option for Rb-proficient TNBC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Sinergismo Farmacológico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Apoptose , Proliferação de Células , Feminino , Humanos , Paclitaxel/administração & dosagem , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Células Tumorais Cultivadas
10.
Target Oncol ; 14(5): 619-626, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31502118

RESUMO

BACKGROUND: Osimertinib is a new third-generation, epidermal growth factor receptor-tyrosine kinase inhibitor highly selective for the epidermal growth factor receptor with both activating and T790M mutations. A recent phase III trial showed a statistically significant progression-free survival benefit with osimertinib vs. gefitinib or erlotinib as first-line treatment for EGFR-mutated non-small cell lung cancer, and preliminary data are available on resistance mechanisms to first-line osimertinib therapy. OBJECTIVE: The objective of this study was to examine potential in vitro mechanisms of acquired resistance to osimertinib in a cell model carrying an EGFR exon 19 deletion. METHODS: PC9 cells were cultured in the presence of increasing concentrations of osimertinib (ranging from 10 to 500 nM) to generate resistant cells. Three clones resistant to osimertinib (half maximal inhibitory concentration > 1 µM) were isolated, genotyped by next-generation sequencing and tested for drug sensitivity. Cell proliferation and migration, cell death, and signaling transduction pathways were analyzed. RESULTS: Our study revealed that all the three resistant clones developed acquired resistance via the BRAF G469A mutation maintaining a constitutive activation of the ERK pathway. Stable transfection of PC9 and HCC827 cells with a plasmid containing BRAF G469A rendered the cells resistant to osimertinib. Treatment with selumetinib and trametinib, but not dabrafenib, restored the sensitivity to osimertinib and enhanced cell death in the resistant clones with the BRAF G469A mutation. CONCLUSIONS: Our in vitro studies revealed the BRAF G469A-activating mutation as a potential mechanism of acquired resistance to first-line osimertinib treatment, and provide a strategy of intervention to overcome this mechanism of resistance.


Assuntos
Acrilamidas/uso terapêutico , Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Deleção de Sequência/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/genética , Éxons/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
11.
Front Oncol ; 9: 179, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972293

RESUMO

Fibroblast Growth Factor Receptors (FGFR1-4) have a critical role in the progression of several human cancers, including Squamous Non-Small-Cell Lung Cancer (SQCLC). Both non-selective and selective reversible FGFR inhibitors are under clinical investigation for the treatment of patients with tumors harboring FGFR alterations. Despite their potential efficacy, the clinical development of these drugs has encountered several challenges, including toxicity, and the appearance of drug resistance. Recent efforts have been directed at development of irreversible FGFR inhibitors, which have the potential to exert superior anti-proliferative activity in tumors carrying FGFR alterations. With this in mind, we synthetized, and investigated a set of novel inhibitors possessing a warhead potentially able to covalently bind a cysteine in the P-loop of FGFR. Among them, the chloroacetamide UPR1376 resulted able to irreversible inhibit FGFR1 phosphorylation in FGFR1 over-expressing cells generated from SQCLC SKMES-1 cells. In addition, this compound inhibited cell proliferation in FGFR1-amplified H1581 cells with a potency higher than the reversible inhibitor BGJ398 (infigratinib), while sparing FGFR1 low-expressing cells. The anti-proliferative effects of UPR1376 were demonstrated in both 2D and 3D systems and were associated with the inhibition of MAPK and AKT/mTOR signaling pathways. UPR1376 inhibited cell proliferation also in two BGJ398-resistant cell clones generated from H1581 by chronic exposure to BGJ398, although at concentrations higher than those effective in the parental cells, likely due to the persistent activation of the MAPK pathway associated to NRAS amplification. Combined blockade of FGFR1 and MAPK signaling, by UPR1376 and trametinib respectively, significantly enhanced the efficacy of UPR1376, providing a means of circumventing resistance to FGFR1 inhibition. Our findings suggest that the insertion of a chloroacetamide warhead on a suitable scaffold, as exemplified by UPR1376, is a valuable strategy to develop a novel generation of FGFR inhibitors for the treatment of SQCLC patients with FGFR alterations.

12.
J Exp Clin Cancer Res ; 38(1): 222, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138260

RESUMO

BACKGROUND: The third generation Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor (TKI) osimertinib has been initially approved for T790M positive Non-Small Cell Lung Cancer (NSCLC) and more recently for first-line treatment of EGFR-mutant T790M negative NSCLC patients. Similarly to previous generation TKIs, despite the high response rate, disease progression eventually occurs and current clinical research is focused on novel strategies to delay the emergence of osimertinib resistance. In this study we investigated the combination of osimertinib with pemetrexed or cisplatin in EGFR-mutated NSCLC cell lines and xenografts. METHODS: Tumor growth was evaluated in a PC9T790M xenograft model and tissue composition was morphometrically determined. PC9, PC9T790M and HCC827 cell lines were employed to test the efficacy of osimertinib and chemotherapy combination in vitro. Cell viability and cell death were evaluated by MTT assay and fluorescence microscopy. Protein expression and gene status were analysed by Western blotting, fluorescence in situ hybridization analysis, next-generation sequencing and digital droplet PCR. RESULTS: In xenograft models, osimertinib significantly inhibited tumor growth, however, as expected, in 50% of mice drug-resistance developed. A combination of osimertinib with pemetrexed or cisplatin prevented or at least delayed the onset of resistance. Interestingly, such combinations increased the fraction of fibrotic tissue and exerted a long-lasting activity after stopping therapy. In vitro studies demonstrated the stronger efficacy of the combination over the single treatments in inhibiting cell proliferation and inducing cell death in PC9T790M cells as well as in T790M negative PC9 and HCC827 cell lines, suggesting the potential role of this strategy also as first-line treatment. Finally, we demonstrated that osimertinib resistant clones, either derived from resistant tumors or generated in vitro, were less sensitive to pemetrexed prompting to use a chemotherapy regimen non-containing pemetrexed in patients after progression to osimertinib treatment. CONCLUSIONS: Our results identify a combination between osimertinib and pemetrexed or cisplatin potentially useful in the treatment of EGFR-mutated NSCLC patients, which might delay the appearance of osimertinib resistance with long-lasting effects.


Assuntos
Acrilamidas/administração & dosagem , Compostos de Anilina/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Pemetrexede/administração & dosagem , Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Camundongos , Mutação , Pemetrexede/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Eur J Med Chem ; 128: 140-153, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28182987

RESUMO

The possibility to influence the physiological concentration of copper ions through the careful choice of ligands is emerging as a novel intriguing strategy in the treatment of pathologies such as cancer and Alzheimer. Thiosemicarbazones play an important role in this field, because they offer a wide variety of potential functionalizations and different kinds of coordination modes. Here we report the synthesis of some 8-hydroxyquinoline thiosemicarbazone ligands containing an ONN'S donor set and their Zn(II) and Cu(II) complexes. The metal complexes were characterized in solution and in the solid state and the X-ray structure of one of the copper(II) complex is reported. The Cu(II) complexes were characterized also by means of quantum mechanical calculations. The Cu(II) complexes displayed cytostatic activity in different cancer cell models. In particular, the most active Cu(II) complex significantly inhibited cell proliferation with an IC50 value lower than 1 µM; this effect was associated with a block of the cell cycle in the G2/M phase. This Cu(II) complex induced neither the production of reactive oxygen species (ROS) nor the accumulation of p53 protein, suggesting the lack of DNA damage.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Cobre/química , Hidroxiquinolinas/química , Tiossemicarbazonas/química , Western Blotting , Ciclo Celular/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo
14.
J Exp Clin Cancer Res ; 36(1): 174, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29202823

RESUMO

BACKGROUND: Osimertinib is a third-generation EGFR-TKI with a high selective potency against T790M-mutant NSCLC patients. Considering that osimertinib can lead to enhanced HER-2 expression on cell surface and HER-2 overexpression is a mechanism of resistance to osimertinib, this study was addressed to investigate the potential of combining osimertinib with trastuzumab emtansine (T-DM1) in order to improve the efficacy of osimertinib and delay or overcome resistance in NSCLC cell lines with EGFR activating mutation and with T790M mutation or HER-2 amplification. METHODS: The effects of osimertinib combined with T-DM1 on cell proliferation, cell cycle, cell death, antibody-dependent cell-mediated cytotoxicity (ADCC), and acquisition of osimertinib resistance was investigated in PC9, PC9-T790M and H1975 cell lines. The potential of overcoming osimertinib resistance with T-DM1 was tested in a PC9/HER2c1 xenograft model. RESULTS: T-DM1 exerted an additive effect when combined with osimertinib in terms of inhibition of cell proliferation, cell death and ADCC induction in PC9, PC9-T790M and H1975 cell lines. Combining osimertinib and T-DM1 using different schedules in long-term growth experiments revealed that the appearance of osimertinib-resistance was prevented in PC9-T790M and delayed in H1975 cells when the two drugs were given together. By contrast, when osimertinib was followed by T-DM1 an antagonistic effect was observed on cell proliferation, cell death and resistance acquisition. In xenograft models, we demonstrated that HER-2 amplification was associated with osimertinib-resistance and that T-DM1 co-administration is a potential strategy to overcome this resistance. CONCLUSIONS: Our data suggest that concomitant treatment with osimertinib and T-DM1 may be a promising therapeutic strategy for EGFR-mutant NSCLC.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Maitansina/análogos & derivados , Inibidores de Proteínas Quinases/uso terapêutico , Trastuzumab/uso terapêutico , Ado-Trastuzumab Emtansina , Animais , Antineoplásicos Imunológicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/patologia , Maitansina/farmacologia , Maitansina/uso terapêutico , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Trastuzumab/farmacologia
15.
Crit Rev Oncol Hematol ; 112: 208-214, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28325261

RESUMO

Notwithstanding the continuous progress made in cancer treatment in the last 20 years, and the availability of new targeted therapies, metastatic Breast Cancer (BC) is still incurable. Targeting the cell cycle machinery has emerged as an attractive strategy to tackle cancer progression, showing very promising results in the preclinical and clinical settings. The first selective inhibitors of CDK4/6 received breakthrough status and FDA approval in combination with letrozole (February 2015) and fulvestrant (February 2016) as first-line therapy in ER-positive advanced and metastatic BC. Considering the success of this family of compounds in hormone-positive BC, new possible applications are being investigated in other molecular subtypes. This review summarizes the latest findings on the use of CDK4/6 inhibitors in HER2 positive BC.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Estradiol/análogos & derivados , Estradiol/uso terapêutico , Fulvestranto , Humanos , Letrozol , Nitrilas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/biossíntese , Triazóis/uso terapêutico
16.
Oncotarget ; 8(54): 91841-91859, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29190880

RESUMO

Fibroblast Growth Factor Receptor (FGFR) signaling is a complex pathway which controls several processes, including cell proliferation, survival, migration, and metabolism. FGFR1 signaling is frequently deregulated via amplification/over-expression in NSCLC of squamous histotype (SQCLC), however its inhibition has not been successfully translated in clinical setting. We determined whether targeting downstream signaling implicated in FGFR1 effects on glucose metabolism potentiates the anti-tumor activity of FGFR1 inhibition in SQCLC. In FGFR1 amplified/over-expressing SQCLC cell lines, FGF2-mediated stimulation of FGFR1 under serum-deprivation activated both MAPK and AKT/mTOR pathways and increased glucose uptake, glycolysis, and lactate production, through AKT/mTOR-dependent HIF-1α accumulation and up-regulation of GLUT-1 glucose transporter. These effects were hindered by PD173074 and NVP-BGJ398, selective FGFR inhibitors, as well as by dovitinib, a multi-kinase inhibitor. Glucose metabolism was hampered by the FGFR inhibitors also under hypoxic conditions, with consequent inhibition of cell proliferation and viability. In presence of serum, glucose metabolism was impaired only in cell models in which FGFR1 inhibition was associated with AKT/mTOR down-regulation. When the activation of the AKT/mTOR pathway persisted despite FGFR1 down-regulation, the efficacy of NVP-BGJ398 could be significantly improved by the combination with NVP-BEZ235 or other inhibitors of this signaling cascade, both in vitro and in xenotransplanted nude mice. Collectively our results indicate that inhibition of FGFR1 signaling impacts on cancer cell growth also by affecting glucose energy metabolism. In addition, this study strongly suggests that the therapeutic efficacy of FGFR1 targeting molecules in SQCLC may be implemented by combined treatments tackling on glucose metabolism.

17.
Oncotarget ; 8(32): 53068-53083, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28881794

RESUMO

Squamous cell lung carcinoma (SCC) accounts for 30% of patients with NSCLC and to date, no molecular targeted agents are approved for this type of tumor. However, recent studies have revealed several oncogenic mutations in SCC patients, including an alteration of the PI3K/AKT pathway, i.e. PI3K point mutations and amplification, AKT mutations and loss or reduced PTEN expression. Prompted by our observation of a correlation between PTEN loss and FAK phosphorylation in a cohort of patients with stage IV SCC, we evaluated the relevance of PTEN loss in cancer progression as well as the efficacy of a new combined treatment with the pan PI3K inhibitor buparlisip and the FAK inhibitor defactinib. An increase in AKT and FAK phosphorylation, associated with increased proliferation and invasiveness, paralleled by the acquisition of mesenchymal markers, and overexpression of the oncomir miR-21 were observed in SKMES-1-derived cell clones with a stable reduction of PTEN. Notably, the combined treatment induced a synergistic inhibition of cell proliferation, and a significant reduction in cell migration and invasion only in cells with reduced PTEN. The molecular mechanisms underlying these findings were unraveled using a specific RTK array that showed a reduction in phosphorylation of key kinases such as JNK, GSK-3 α/ß, and AMPK-α2, due to the concomitant decrease in AKT and FAK activation. In conclusion, the combination of buparlisib and defactinib was effective against cells with reduced PTEN and warrants further studies as a novel therapeutic strategy for stage IV SCC patients with loss of PTEN expression.

18.
Neoplasia ; 19(8): 637-648, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28704762

RESUMO

Malignant pleural mesothelioma (MPM) is a progressive malignancy associated to the exposure of asbestos fibers. The most frequently inactivated tumor suppressor gene in MPM is CDKN2A/ARF, encoding for the cell cycle inhibitors p16INK4a and p14ARF, deleted in about 70% of MPM cases. Considering the high frequency of alterations of this gene, we tested in MPM cells the efficacy of palbociclib (PD-0332991), a highly selective inhibitor of cyclin-dependent kinase (CDK) 4/6. The analyses were performed on a panel of MPM cell lines and on two primary culture cells from pleural effusion of patients with MPM. All the MPM cell lines, as well as the primary cultures, were sensitive to palbociclib with a significant blockade in G0/G1 phase of the cell cycle and with the acquisition of a senescent phenotype. Palbociclib reduced the phosphorylation levels of CDK6 and Rb, the expression of myc with a concomitant increased phosphorylation of AKT. Based on these results, we tested the efficacy of the combination of palbociclib with the PI3K inhibitors NVP-BEZ235 or NVP-BYL719. After palbociclib treatment, the sequential association with PI3K inhibitors synergistically hampered cell proliferation and strongly increased the percentage of senescent cells. In addition, AKT activation was repressed while p53 and p21 were up-regulated. Interestingly, two cycles of sequential drug administration produced irreversible growth arrest and senescent phenotype that were maintained even after drug withdrawal. These findings suggest that the sequential association of palbociclib with PI3K inhibitors may represent a valuable therapeutic option for the treatment of MPM.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Mesotelioma Maligno , Piperazinas/farmacologia , Piridinas/farmacologia
19.
J Thorac Oncol ; 11(7): 1051-63, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27006151

RESUMO

INTRODUCTION: Development of resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors is a clinical issue in patients with epidermal growth factor receptor gene (EGFR)-mutated non-small cell lung cancer (NSCLC). The aim of this study was to investigate the potential of combining gefitinib and pemetrexed in preventing the acquisition of resistance to EGFR tyrosine kinase inhibitors in NSCLC cell lines harboring EGFR exon 19 deletion. METHODS: The effect of different combinatorial schedules of gefitinib and pemetrexed on cell proliferation, cell cycle, apoptosis, and acquisition of gefitinib resistance in PC9 and HCC827 NSCLC cell lines and in PC9 xenograft models was investigated. RESULTS: Simultaneous treatment with gefitinib and pemetrexed enhanced cell growth inhibition and cell death and prevented the appearance of gefitinib resistance mediated by T790M mutation or epithelial-to-mesenchymal transition (EMT) in PC9 and HCC827 cells, respectively. In PC9 cells and in PC9 xenografts the combination of gefitinib and pemetrexed, with different schedules, prevented gefitinib resistance only when pemetrexed was the first treatment, given alone or together with gefitinib. Conversely, when gefitinib alone was administered first and pemetrexed sequentially alternated, a negative interaction was observed and no prevention of gefitinib resistance was documented. The mechanisms of resistance that developed in vivo included T790M mutation and EMT. The induction of EMT was a feature of tumors treated with gefitinib when given before pemetrexed, whereas T790M was recorded only in tumors treated with gefitinib alone. CONCLUSIONS: The combination of gefitinib and pemetrexed is effective in preventing gefitinib resistance; the application of intermittent treatments requires that gefitinib not be administered before pemetrexed.


Assuntos
Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Receptores ErbB/antagonistas & inibidores , Gefitinibe , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Pemetrexede/administração & dosagem , Quinazolinas/administração & dosagem
20.
Biosens Bioelectron ; 68: 791-797, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25687585

RESUMO

We propose and demonstrate a sensitive diagnostic device based on an Organic Electrochemical Transistor (OECT) for direct in-vitro monitoring cell death. The system efficiently monitors cell death dynamics, being able to detect signals related to specific death mechanisms, namely necrosis or early/late apoptosis, demonstrating a reproducible correlation between the OECT electrical response and the trends of standard cell death assays. The innovative design of the Twell-OECT system has been modeled to better correlate electrical signals with cell death dynamics. To qualify the device, we used a human lung adenocarcinoma cell line (A549) that was cultivated on the micro-porous membrane of a Transwell (Twell) support, and exposed to the anticancer drug doxorubicin. Time-dependent and dose-dependent dynamics of A549 cells exposed to doxorubicin are evaluated by monitoring cell death upon exposure to a range of doses and times that fully covers the protocols used in cancer treatment. The demonstrated ability to directly monitor cell stress and death dynamics upon drug exposure using simple electronic devices and, possibly, achieving selectivity to different cell dynamics is of great interest for several application fields, including toxicology, pharmacology, and therapeutics.


Assuntos
Apoptose , Técnicas Biossensoriais , Técnicas Eletroquímicas , Adenocarcinoma/diagnóstico , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Neoplasias Pulmonares/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA