Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 485(7399): 494-7, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22622576

RESUMO

Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.


Assuntos
Aquecimento Global , Modelos Biológicos , Periodicidade , Fenômenos Fisiológicos Vegetais , Incerteza , Artefatos , Ecossistema , Flores/crescimento & desenvolvimento , Flores/fisiologia , Desenvolvimento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Plantas/classificação , Reprodutibilidade dos Testes , Solo/química , Temperatura , Fatores de Tempo
2.
Earth Space Sci ; 9(3): e2021EA002119, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35865637

RESUMO

This article is composed of three independent commentaries about the state of Integrated, Coordinated, Open, Networked (ICON) principles in the American Geophysical Union Biogeosciences section, and discussion on the opportunities and challenges of adopting them. Each commentary focuses on a different topic: (a) Global collaboration, technology transfer, and application (Section 2), (b) Community engagement, community science, education, and stakeholder involvement (Section 3), and (c) Field, experimental, remote sensing, and real-time data research and application (Section 4). We discuss needs and strategies for implementing ICON and outline short- and long-term goals. The inclusion of global data and international community engagement are key to tackling grand challenges in biogeosciences. Although recent technological advances and growing open-access information across the world have enabled global collaborations to some extent, several barriers, ranging from technical to organizational to cultural, have remained in advancing interoperability and tangible scientific progress in biogeosciences. Overcoming these hurdles is necessary to address pressing large-scale research questions and applications in the biogeosciences, where ICON principles are essential. Here, we list several opportunities for ICON, including coordinated experimentation and field observations across global sites, that are ripe for implementation in biogeosciences as a means to scientific advancements and social progress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA