Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Cell ; 156(6): 1179-1192, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24630721

RESUMO

The hexosamine biosynthetic pathway (HBP) generates uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) for glycan synthesis and O-linked GlcNAc (O-GlcNAc) protein modifications. Despite the established role of the HBP in metabolism and multiple diseases, regulation of the HBP remains largely undefined. Here, we show that spliced X-box binding protein 1 (Xbp1s), the most conserved signal transducer of the unfolded protein response (UPR), is a direct transcriptional activator of the HBP. We demonstrate that the UPR triggers HBP activation via Xbp1s-dependent transcription of genes coding for key, rate-limiting enzymes. We further establish that this previously unrecognized UPR-HBP axis is triggered in a variety of stress conditions. Finally, we demonstrate a physiologic role for the UPR-HBP axis by showing that acute stimulation of Xbp1s in heart by ischemia/reperfusion confers robust cardioprotection in part through induction of the HBP. Collectively, these studies reveal that Xbp1s couples the UPR to the HBP to protect cells under stress.


Assuntos
Vias Biossintéticas , Proteínas de Ligação a DNA/metabolismo , Hexosaminas/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Animais , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante) , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Transferases de Grupos Nitrogenados/genética , Fatores de Transcrição de Fator Regulador X , Proteína 1 de Ligação a X-Box
2.
Physiology (Bethesda) ; 38(3): 0, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36856309

RESUMO

Organelles are membrane-lined structures that compartmentalize subcellular biochemical functions. Therefore, interorganelle communication is crucial for cellular responses that require the coordination of such functions. Multiple principles govern interorganelle interactions, which arise from the complex nature of organelles: position, multilingualism, continuity, heterogeneity, proximity, and bidirectionality, among others. Given their importance, alterations in organelle communication have been linked to many diseases. Among the different types of contacts, endoplasmic reticulum mitochondria interactions are the best known; however, mounting evidence indicates that other organelles also have something to say in the pathophysiological conversation.


Assuntos
Organelas , Humanos , Mitocôndrias/fisiologia , Retículo Endoplasmático/fisiologia , Organelas/fisiologia
3.
J Neuroinflammation ; 21(1): 191, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095788

RESUMO

OBJECTIVE: Obesity represents a significant global health challenge characterized by chronic low-grade inflammation and metabolic dysregulation. The hypothalamus, a key regulator of energy homeostasis, is particularly susceptible to obesity's deleterious effects. This study investigated the role of the immunoproteasome, a specialized proteasomal complex implicated in inflammation and cellular homeostasis, during metabolic diseases. METHODS: The levels of the immunoproteasome ß5i subunit were analyzed by immunostaining, western blotting, and proteasome activity assay in mice fed with either a high-fat diet (HFD) or a regular diet (CHOW). We also characterized the impact of autophagy inhibition on the levels of the immunoproteasome ß5i subunit and the activation of the AKT pathway. Finally, through confocal microscopy, we analyzed the contribution of ß5i subunit inhibition on mitochondrial function by flow cytometry and mitophagy assay. RESULTS: Using an HFD-fed obese mouse model, we found increased immunoproteasome levels in hypothalamic POMC neurons. Furthermore, we observed that palmitic acid (PA), a major component of saturated fats found in HFD, increased the levels of the ß5i subunit of the immunoproteasome in hypothalamic neuronal cells. Notably, the increase in immunoproteasome expression was associated with decreased autophagy, a critical cellular process in maintaining homeostasis and suppressing inflammation. Functionally, PA disrupted the insulin-glucose axis, leading to reduced AKT phosphorylation and increased intracellular glucose levels in response to insulin due to the upregulation of the immunoproteasome. Mechanistically, we identified that the protein PTEN, a key regulator of insulin signaling, was reduced in an immunoproteasome-dependent manner. To further investigate the potential therapeutic implications of these findings, we used ONX-0914, a specific immunoproteasome inhibitor. We demonstrated that this inhibitor prevents PA-induced insulin-glucose axis imbalance. Given the interplay between mitochondrial dysfunction and metabolic disturbances, we explored the impact of ONX-0914 on mitochondrial function. Notably, ONX-0914 preserved mitochondrial membrane potential and attenuated mitochondrial ROS production in the presence of PA. Moreover, we found that ONX-0914 reduced mitophagy in the presence of PA. CONCLUSIONS: Our findings strongly support the pathogenic involvement of the immunoproteasome in hypothalamic neurons in the context of HFD-induced obesity and metabolic disturbances. Targeting the immunoproteasome highlights a promising therapeutic strategy to mitigate the detrimental effects of obesity on the insulin-glucose axis and cellular homeostasis. This study provides valuable insights into the mechanisms driving obesity-related metabolic diseases and offers potential avenues for developing novel therapeutic interventions.


Assuntos
Dieta Hiperlipídica , Hipotálamo , Camundongos Endogâmicos C57BL , Neurônios , Obesidade , Complexo de Endopeptidases do Proteassoma , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Hipotálamo/metabolismo , Obesidade/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Masculino , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Oligopeptídeos
4.
FASEB J ; 34(3): 4009-4025, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31990106

RESUMO

Potentially malignant lesions, commonly referred to as dysplasia, are associated with malignant transformation by mechanisms that remain unclear. We recently reported that increased Wnt secretion promotes the nuclear accumulation of ß-catenin and expression of target genes in oral dysplasia. However, the mechanisms accounting for nuclear re-localization of ß-catenin in oral dysplasia remain unclear. In this study, we show that endosomal sequestration of the ß-catenin destruction complex allows nuclear accumulation of ß-catenin in oral dysplasia, and that these events depended on the endocytic protein Rab5. Tissue immunofluorescence analysis showed aberrant accumulation of enlarged early endosomes in oral dysplasia biopsies, when compared with healthy oral mucosa. These observations were confirmed in cell culture models, by comparing dysplastic oral keratinocytes (DOK) and non-dysplastic oral keratinocytes (OKF6). Intriguingly, DOK depicted higher levels of active Rab5, a critical regulator of early endosomes, when compared with OKF6. Increased Rab5 activity in DOK was necessary for nuclear localization of ß-catenin and Tcf/Lef-dependent transcription, as shown by expression of dominant negative and constitutively active mutants of Rab5, along with immunofluorescence, subcellular fractionation, transcription, and protease protection assays. Mechanistically, elevated Rab5 activity in DOK accounted for endosomal sequestration of components of the destruction complex, including GSK3ß, Axin, and adenomatous polyposis coli (APC), as observed in Rab5 dominant negative experiments. In agreement with these in vitro observations, tissue immunofluorescence analysis showed increased co-localization of GSK3ß, APC, and Axin, with early endosome antigen 1- and Rab5-positive early endosomes in clinical samples of oral dysplasia. Collectively, these data indicate that increased Rab5 activity and endosomal sequestration of the ß-catenin destruction complex leads to stabilization and nuclear accumulation of ß-catenin in oral dysplasia.


Assuntos
Apraxias/metabolismo , Núcleo Celular/metabolismo , beta Catenina/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Linhagem Celular , Endossomos/metabolismo , Imunofluorescência , Humanos , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
5.
Circulation ; 139(20): 2342-2357, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30818997

RESUMO

BACKGROUND: The primary cilium is a singular cellular structure that extends from the surface of many cell types and plays crucial roles in vertebrate development, including that of the heart. Whereas ciliated cells have been described in developing heart, a role for primary cilia in adult heart has not been reported. This, coupled with the fact that mutations in genes coding for multiple ciliary proteins underlie polycystic kidney disease, a disorder with numerous cardiovascular manifestations, prompted us to identify cells in adult heart harboring a primary cilium and to determine whether primary cilia play a role in disease-related remodeling. METHODS: Histological analysis of cardiac tissues from C57BL/6 mouse embryos, neonatal mice, and adult mice was performed to evaluate for primary cilia. Three injury models (apical resection, ischemia/reperfusion, and myocardial infarction) were used to identify the location and cell type of ciliated cells with the use of antibodies specific for cilia (acetylated tubulin, γ-tubulin, polycystin [PC] 1, PC2, and KIF3A), fibroblasts (vimentin, α-smooth muscle actin, and fibroblast-specific protein-1), and cardiomyocytes (α-actinin and troponin I). A similar approach was used to assess for primary cilia in infarcted human myocardial tissue. We studied mice silenced exclusively in myofibroblasts for PC1 and evaluated the role of PC1 in fibrogenesis in adult rat fibroblasts and myofibroblasts. RESULTS: We identified primary cilia in mouse, rat, and human heart, specifically and exclusively in cardiac fibroblasts. Ciliated fibroblasts are enriched in areas of myocardial injury. Transforming growth factor ß-1 signaling and SMAD3 activation were impaired in fibroblasts depleted of the primary cilium. Extracellular matrix protein levels and contractile function were also impaired. In vivo, depletion of PC1 in activated fibroblasts after myocardial infarction impaired the remodeling response. CONCLUSIONS: Fibroblasts in the neonatal and adult heart harbor a primary cilium. This organelle and its requisite signaling protein, PC1, are required for critical elements of fibrogenesis, including transforming growth factor ß-1-SMAD3 activation, production of extracellular matrix proteins, and cell contractility. Together, these findings point to a pivotal role of this organelle, and PC1, in disease-related pathological cardiac remodeling and suggest that some of the cardiovascular manifestations of autosomal dominant polycystic kidney disease derive directly from myocardium-autonomous abnormalities.


Assuntos
Fibroblastos/ultraestrutura , Miocárdio/patologia , Rim Policístico Autossômico Dominante/patologia , Células 3T3/ultraestrutura , Animais , Animais Recém-Nascidos , Remodelamento Atrial , Cílios , Coração Fetal/citologia , Fibrose , Traumatismos Cardíacos/patologia , Humanos , Cinesinas/deficiência , Cinesinas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Rim Policístico Autossômico Dominante/genética , Ratos , Transdução de Sinais , Proteína Smad3/fisiologia , Canais de Cátion TRPP/deficiência , Canais de Cátion TRPP/fisiologia , Fator de Crescimento Transformador beta1/fisiologia , Remodelação Ventricular
6.
J Mol Cell Cardiol ; 118: 110-121, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29518398

RESUMO

AIMS: Considerable evidence points to critical roles of intracellular Ca2+ homeostasis in the modulation and control of autophagic activity. Yet, underlying molecular mechanisms remain unknown. Mutations in the gene (pkd2) encoding polycystin-2 (PC2) are associated with autosomal dominant polycystic kidney disease (ADPKD), the most common inherited nephropathy. PC2 has been associated with impaired Ca2+ handling in cardiomyocytes and indirect evidence suggests that this protein may be involved in autophagic control. Here, we investigated the role for PC2 as an essential regulator of Ca2+ homeostasis and autophagy. METHODS AND RESULTS: Activation of autophagic flux triggered by mTOR inhibition either pharmacologically (rapamycin) or by means of nutrient depletion was suppressed in cells depleted of PC2. Moreover, cardiomyocyte-specific PC2 knockout mice (αMhc-cre;Pkd2F/F mice) manifested impaired autophagic flux in the setting of nutrient deprivation. Stress-induced autophagy was blunted by intracellular Ca2+ chelation using BAPTA-AM, whereas removal of extracellular Ca2+ had no effect, pointing to a role of intracellular Ca2+ homeostasis in stress-induced cardiomyocyte autophagy. To determine the link between stress-induced autophagy and PC2-induced Ca2+ mobilization, we over-expressed either wild-type PC2 (WT) or a Ca2+-channel deficient PC2 mutant (PC2-D509V). PC2 over-expression increased autophagic flux, whereas PC2-D509V expression did not. Importantly, autophagy induction triggered by PC2 over-expression was attenuated by BAPTA-AM, supporting a model of PC2-dependent control of autophagy through intracellular Ca2+. Furthermore, PC2 ablation was associated with impaired Ca2+ handling in cardiomyocytes marked by partial depletion of sarcoplasmic reticulum Ca2+ stores. Finally, we provide evidence that Ca2+-mediated autophagy elicited by PC2 is a mechanism conserved across multiple cell types. CONCLUSION: Together, this study unveils PC2 as a novel regulator of autophagy acting through control of intracellular Ca2+ homeostasis.


Assuntos
Autofagia , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPP/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cálcio/metabolismo , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Estresse Mecânico
7.
Am J Physiol Endocrinol Metab ; 315(1): E7-E14, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29509437

RESUMO

Estrogens and their receptors play key roles in regulating body weight, energy expenditure, and metabolic homeostasis. It is known that lack of estrogens promotes increased food intake and induces the expansion of adipose tissues, for which much is known. An area of estrogenic research that has received less attention is the role of estrogens and their receptors in influencing intermediary lipid metabolism in organs such as the brain. In this review, we highlight the actions of estrogens and their receptors in regulating their impact on modulating fatty acid content, utilization, and oxidation through their direct impact on intracellular signaling cascades within the central nervous system.


Assuntos
Química Encefálica/fisiologia , Receptor alfa de Estrogênio/fisiologia , Estrogênios/fisiologia , Metabolismo dos Lipídeos/fisiologia , Animais , Química Encefálica/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos
8.
Circulation ; 133(17): 1668-87, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-26984939

RESUMO

BACKGROUND: The clinical use of doxorubicin is limited by cardiotoxicity. Histopathological changes include interstitial myocardial fibrosis and the appearance of vacuolated cardiomyocytes. Whereas dysregulation of autophagy in the myocardium has been implicated in a variety of cardiovascular diseases, the role of autophagy in doxorubicin cardiomyopathy remains poorly defined. METHODS AND RESULTS: Most models of doxorubicin cardiotoxicity involve intraperitoneal injection of high-dose drug, which elicits lethargy, anorexia, weight loss, and peritoneal fibrosis, all of which confound the interpretation of autophagy. Given this, we first established a model that provokes modest and progressive cardiotoxicity without constitutional symptoms, reminiscent of the effects seen in patients. We report that doxorubicin blocks cardiomyocyte autophagic flux in vivo and in cardiomyocytes in culture. This block was accompanied by robust accumulation of undegraded autolysosomes. We go on to localize the site of block as a defect in lysosome acidification. To test the functional relevance of doxorubicin-triggered autolysosome accumulation, we studied animals with diminished autophagic activity resulting from haploinsufficiency for Beclin 1. Beclin 1(+/-) mice exposed to doxorubicin were protected in terms of structural and functional changes within the myocardium. Conversely, animals overexpressing Beclin 1 manifested an amplified cardiotoxic response. CONCLUSIONS: Doxorubicin blocks autophagic flux in cardiomyocytes by impairing lysosome acidification and lysosomal function. Reducing autophagy initiation protects against doxorubicin cardiotoxicity.


Assuntos
Autofagia/efeitos dos fármacos , Doxorrubicina/farmacologia , Lisossomos/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos , Autofagia/fisiologia , Linhagem Celular , Células Cultivadas , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Circulation ; 131(24): 2131-42, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25888683

RESUMO

BACKGROUND: L-type calcium channel activity is critical to afterload-induced hypertrophic growth of the heart. However, the mechanisms governing mechanical stress-induced activation of L-type calcium channel activity are obscure. Polycystin-1 (PC-1) is a G protein-coupled receptor-like protein that functions as a mechanosensor in a variety of cell types and is present in cardiomyocytes. METHODS AND RESULTS: We subjected neonatal rat ventricular myocytes to mechanical stretch by exposing them to hypo-osmotic medium or cyclic mechanical stretch, triggering cell growth in a manner dependent on L-type calcium channel activity. RNAi-dependent knockdown of PC-1 blocked this hypertrophy. Overexpression of a C-terminal fragment of PC-1 was sufficient to trigger neonatal rat ventricular myocyte hypertrophy. Exposing neonatal rat ventricular myocytes to hypo-osmotic medium resulted in an increase in α1C protein levels, a response that was prevented by PC-1 knockdown. MG132, a proteasomal inhibitor, rescued PC-1 knockdown-dependent declines in α1C protein. To test this in vivo, we engineered mice harboring conditional silencing of PC-1 selectively in cardiomyocytes (PC-1 knockout) and subjected them to mechanical stress in vivo (transverse aortic constriction). At baseline, PC-1 knockout mice manifested decreased cardiac function relative to littermate controls, and α1C L-type calcium channel protein levels were significantly lower in PC-1 knockout hearts. Whereas control mice manifested robust transverse aortic constriction-induced increases in cardiac mass, PC-1 knockout mice showed no significant growth. Likewise, transverse aortic constriction-elicited increases in hypertrophic markers and interstitial fibrosis were blunted in the knockout animals CONCLUSION: PC-1 is a cardiomyocyte mechanosensor that is required for cardiac hypertrophy through a mechanism that involves stabilization of α1C protein.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Cardiomegalia/etiologia , Mecanotransdução Celular/fisiologia , Miócitos Cardíacos/fisiologia , Canais de Cátion TRPP/fisiologia , Animais , Animais Recém-Nascidos , Biomarcadores , Canais de Cálcio Tipo L/biossíntese , Canais de Cálcio Tipo L/genética , Cardiomegalia/prevenção & controle , Células Cultivadas , Fibrose , Hipertrofia , Soluções Hipotônicas/farmacologia , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Estrutura Terciária de Proteína , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Estresse Mecânico , Canais de Cátion TRPP/química , Canais de Cátion TRPP/genética
10.
Am J Physiol Endocrinol Metab ; 310(8): E587-E596, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26884385

RESUMO

Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy.


Assuntos
Autofagia , Sinalização do Cálcio , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
11.
EMBO J ; 30(24): 4908-20, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22081109

RESUMO

Autophagic responses are coupled to the activation of the inhibitor of NF-κB kinase (IKK). Here, we report that the essential autophagy mediator Beclin 1 and TGFß-activated kinase 1 (TAK1)-binding proteins 2 and 3 (TAB2 and TAB3), two upstream activators of the TAK1-IKK signalling axis, constitutively interact with each other via their coiled-coil domains (CCDs). Upon autophagy induction, TAB2 and TAB3 dissociate from Beclin 1 and bind TAK1. Moreover, overexpression of TAB2 and TAB3 suppresses, while their depletion triggers, autophagy. The expression of the C-terminal domain of TAB2 or TAB3 or that of the CCD of Beclin 1 competitively disrupts the interaction between endogenous Beclin 1, TAB2 and TAB3, hence stimulating autophagy through a pathway that requires endogenous Beclin 1, TAK1 and IKK to be optimally efficient. These results point to the existence of an autophagy-stimulatory 'switch' whereby TAB2 and TAB3 abandon inhibitory interactions with Beclin 1 to engage in a stimulatory liaison with TAK1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Proteína Beclina-1 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Estrutura Terciária de Proteína , Técnicas do Sistema de Duplo-Híbrido
12.
Biochim Biophys Acta ; 1832(8): 1334-44, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23602992

RESUMO

Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca(2+) overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca(2+) levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca(2+) influx, mitochondrial network fragmentation and loss of the mitochondrial Ca(2+) buffer capacity. These biochemical events increase cytosolic Ca(2+) levels and trigger cardiomyocyte death via the activation of calpains.


Assuntos
Cálcio/metabolismo , Ceramidas/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Animais , Apoptose/fisiologia , Calpaína/metabolismo , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Citocromos c/metabolismo , Citoplasma/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Necrose , Ratos , Ratos Sprague-Dawley
13.
J Cell Biochem ; 115(4): 712-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24243530

RESUMO

In the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein. Here we investigate whether this Ca(2+) signal is involved in IGF-1-induced cardiomyocyte hypertrophy. Our results show that the IGF-1-induced increase in Ca(2+) level is abolished by the IGF-1 receptor tyrosine kinase inhibitor AG538, PTX and the peptide inhibitor of Gßγ signaling, ßARKct. Increases in the activities of Ca(2+) -dependent enzymes calcineurin, calmodulin kinase II (CaMKII), and protein kinase Cα (PKCα) were observed at 5 min after IGF-1 exposure. AG538, PTX, ßARKct, and the dominant negative PKCα prevented the IGF-1-dependent phosphorylation of ERK1/2. Participation of calcineurin and CaMKII in ERK phosphorylation was discounted. IGF-1-induced cardiomyocyte hypertrophy, determined by cell size and ß-myosin heavy chain (ß-MHC), was prevented by AG538, PTX, ßARKct, dominant negative PKCα, and the MEK1/2 inhibitor PD98059. Inhibition of calcineurin with CAIN did not abolish IGF-1-induced cardiac hypertrophy. We conclude that IGF-1 induces hypertrophy in cultured cardiomyocytes by activation of the receptor tyrosine kinase activity/ßγ-subunits of a PTX-sensitive G protein/Ca(2+) /PKCα/ERK pathway without the participation of calcineurin.


Assuntos
Cálcio/metabolismo , Cardiomegalia/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Miócitos Cardíacos/patologia , Animais , Calcineurina/genética , Calcineurina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Catecóis/farmacologia , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeos/genética , Fosforilação/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Subunidades Proteicas , Ratos Sprague-Dawley , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Proteínas Recombinantes/genética , Tirfostinas/farmacologia
14.
EMBO J ; 29(3): 515-6, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20125189

RESUMO

Although the essential genes for autophagy (Atg) have been identified, the molecular mechanisms through which Atg proteins control 'self eating' in mammalian cells remain elusive. Beclin 1 (Bec1), the mammalian orthologue of yeast Atg6, is part of the class III phosphatidylinositol 3-kinase (PI3K) complex that induces autophagy. The first among an increasing number of Bec1-interacting proteins that has been identified is the anti-apoptotic protein Bcl-2. The dissociation of Bec1 from Bcl-2 is essential for its autophagic activity, and Bcl-2 only inhibits autophagy when it is present in the endoplasmic reticulum (ER). A paper in this issue of the EMBO Journal has identified a novel protein, NAF-1 (nutrient-deprivation autophagy factor-1), that binds Bcl-2 at the ER. NAF-1 is a component of the inositol-1,4,5 trisphosphate (IP3) receptor complex, which contributes to the interaction of Bcl-2 with Bec1 and is required for Bcl-2 to functionally antagonize Bec1-mediated autophagy. This work provides mechanistic insights into how autophagy- and apoptosis-regulatory molecules crosstalk at the ER.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Autofagia/fisiologia , Receptor Cross-Talk/fisiologia , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Autofagia/genética , Proteína Beclina-1 , Camundongos , Camundongos Knockout , Modelos Biológicos , Ligação Proteica , Multimerização Proteica/genética , Multimerização Proteica/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2
15.
EMBO J ; 29(7): 1272-84, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20186124

RESUMO

Tetraploidy can constitute a metastable intermediate between normal diploidy and oncogenic aneuploidy. Here, we show that the absence of p53 is not only permissive for the survival but also for multipolar asymmetric divisions of tetraploid cells, which lead to the generation of aneuploid cells with a near-to-diploid chromosome content. Multipolar mitoses (which reduce the tetraploid genome to a sub-tetraploid state) are more frequent when p53 is downregulated and the product of the Mos oncogene is upregulated. Mos inhibits the coalescence of supernumerary centrosomes that allow for normal bipolar mitoses of tetraploid cells. In the absence of p53, Mos knockdown prevents multipolar mitoses and exerts genome-stabilizing effects. These results elucidate the mechanisms through which asymmetric cell division drives chromosomal instability in tetraploid cells.


Assuntos
Carcinoma/metabolismo , Neoplasias do Colo/metabolismo , Genes mos , Mitose , Poliploidia , Proteína Supressora de Tumor p53/metabolismo , Aneuploidia , Animais , Carcinoma/genética , Linhagem Celular Tumoral , Centrossomo/metabolismo , Instabilidade Cromossômica , Neoplasias do Colo/genética , Feminino , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Proteína Supressora de Tumor p53/genética
16.
EMBO J ; 29(3): 619-31, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19959994

RESUMO

In response to stress, cells start transcriptional and transcription-independent programs that can lead to adaptation or death. Here, we show that multiple inducers of autophagy, including nutrient depletion, trigger the activation of the IKK (IkappaB kinase) complex that is best known for its essential role in the activation of the transcription factor NF-kappaB by stress. Constitutively active IKK subunits stimulated autophagy and transduced multiple signals that operate in starvation-induced autophagy, including the phosphorylation of AMPK and JNK1. Genetic inhibition of the nuclear translocation of NF-kappaB or ablation of the p65/RelA NF-kappaB subunit failed to suppress IKK-induced autophagy, indicating that IKK can promote the autophagic pathway in an NF-kappaB-independent manner. In murine and human cells, knockout and/or knockdown of IKK subunits (but not that of p65) prevented the induction of autophagy in response to multiple stimuli. Moreover, the knockout of IKK-beta suppressed the activation of autophagy by food deprivation or rapamycin injections in vivo, in mice. Altogether, these results indicate that IKK has a cardinal role in the stimulation of autophagy by physiological and pharmacological stimuli.


Assuntos
Autofagia/fisiologia , Quinase I-kappa B/fisiologia , Animais , Autofagia/genética , Células Cultivadas , Células HeLa , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/fisiologia , NF-kappa B/genética , NF-kappa B/metabolismo , Células NIH 3T3 , Transdução de Sinais/fisiologia
17.
Nat Med ; 13(9): 1050-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17704786

RESUMO

Conventional cancer treatments rely on radiotherapy and chemotherapy. Such treatments supposedly mediate their effects via the direct elimination of tumor cells. Here we show that the success of some protocols for anticancer therapy depends on innate and adaptive antitumor immune responses. We describe in both mice and humans a previously unrecognized pathway for the activation of tumor antigen-specific T-cell immunity that involves secretion of the high-mobility-group box 1 (HMGB1) alarmin protein by dying tumor cells and the action of HMGB1 on Toll-like receptor 4 (TLR4) expressed by dendritic cells (DCs). During chemotherapy or radiotherapy, DCs require signaling through TLR4 and its adaptor MyD88 for efficient processing and cross-presentation of antigen from dying tumor cells. Patients with breast cancer who carry a TLR4 loss-of-function allele relapse more quickly after radiotherapy and chemotherapy than those carrying the normal TLR4 allele. These results delineate a clinically relevant immunoadjuvant pathway triggered by tumor cell death.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Receptor 4 Toll-Like/imunologia , Animais , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/radioterapia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organoplatínicos/uso terapêutico , Osteossarcoma/tratamento farmacológico , Piridinas/uso terapêutico
18.
Clin Cancer Res ; 30(1): 209-223, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37812478

RESUMO

PURPOSE: Oral squamous cell carcinoma (OSCC) is commonly preceded by potentially malignant lesions, referred to as oral dysplasia. We recently reported that oral dysplasia is associated with aberrant activation of the Wnt/ß-catenin pathway, due to overexpression of Wnt ligands in a Porcupine (PORCN)-dependent manner. Pharmacologic inhibition of PORCN precludes Wnt secretion and has been proposed as a potential therapeutic approach to treat established cancers. Nevertheless, there are no studies that explore the effects of PORCN inhibition at the different stages of oral carcinogenesis. EXPERIMENTAL DESIGN: We performed a model of tobacco-induced oral cancer in vitro, where dysplastic oral keratinocytes (DOK) were transformed into oral carcinoma cells (DOK-TC), and assessed the effects of inhibiting PORCN with the C59 inhibitor. Similarly, an in vivo model of oral carcinogenesis and ex vivo samples derived from patients diagnosed with oral dysplasia and OSCC were treated with C59. RESULTS: Both in vitro and ex vivo oral carcinogenesis approaches revealed decreased levels of nuclear ß-catenin and Wnt3a, as observed by immunofluorescence and IHC analyses. Consistently, reduced protein and mRNA levels of survivin were observed after treatment with C59. Functionally, treatment with C59 in vitro resulted in diminished cell migration, viability, and invasion. Finally, by using an in vivo model of oral carcinogenesis, we found that treatment with C59 prevented the development of OSCC by reducing the size and number of oral tumor lesions. CONCLUSIONS: The inhibition of Wnt ligand secretion with C59 represents a feasible treatment to prevent the progression of early oral lesions toward OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Via de Sinalização Wnt , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Bucais/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinogênese/genética , Aciltransferases/metabolismo , Aciltransferases/farmacologia , Proteínas de Membrana/metabolismo
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167256, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38782303

RESUMO

The primary cilium, hereafter cilium, is an antenna-like organelle that modulates intracellular responses, including autophagy, a lysosomal degradation process essential for cell homeostasis. Dysfunction of the cilium is associated with impairment of autophagy and diseases known as "ciliopathies". The discovery of autophagy-related proteins at the base of the cilium suggests its potential role in coordinating autophagy initiation in response to physiopathological stimuli. One of these proteins, beclin-1 (BECN1), it which is necessary for autophagosome biogenesis. Additionally, polycystin-2 (PKD2), a calcium channel enriched at the cilium, is required and sufficient to induce autophagy in renal and cancer cells. We previously demonstrated that PKD2 and BECN1 form a protein complex at the endoplasmic reticulum in non-ciliated cells, where it initiates autophagy, but whether this protein complex is present at the cilium remains unknown. Anorexigenic pro-opiomelanocortin (POMC) neurons are ciliated cells that require autophagy to maintain intracellular homeostasis. POMC neurons are sensitive to metabolic changes, modulating signaling pathways crucial for controlling food intake. Exposure to the saturated fatty acid palmitic acid (PA) reduces ciliogenesis and inhibits autophagy in these cells. Here, we show that PKD2 and BECN1 form a protein complex in N43/5 cells, an in vitro model of POMC neurons, and that both PKD2 and BECN1 locate at the cilium. In addition, our data show that the cilium is required for PKD2-BECN1 protein complex formation and that PA disrupts the PKD2-BECN1 complex, suppressing autophagy. Our findings provide new insights into the mechanisms by which the cilium controls autophagy in hypothalamic neuronal cells.


Assuntos
Autofagia , Proteína Beclina-1 , Cílios , Hipotálamo , Neurônios , Canais de Cátion TRPP , Animais , Camundongos , Proteína Beclina-1/metabolismo , Cílios/metabolismo , Hipotálamo/metabolismo , Hipotálamo/citologia , Neurônios/metabolismo , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética
20.
Methods Cell Biol ; 176: 85-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37164544

RESUMO

Cardiovascular diseases are the leading cause of death and disability worldwide. After heart injury triggered by myocardial ischemia or myocardial infarction, extensive zones of tissue are damaged and some of the tissue dies by necrosis and/or apoptosis. The loss of contractile mass activates a series of biochemical mechanisms that allow, through cardiac remodeling, the replacement of the dysfunctional heart tissue by fibrotic material. Our previous studies have shown that primary cilia, non-motile antenna-like structures at the cell surface required for the activation of specific signaling pathways, are present in cardiac fibroblasts and required for cardiac fibrosis induced by ischemia/reperfusion (I/R) in mice. I/R-induced myocardial fibrosis promotes the enrichment of ciliated cardiac fibroblasts where the myocardial injury occurs. Given discussions about the existence of cilia in specific cardiac cell types, as well as the functional relevance of studying cilia-dependent signaling in cardiac fibrosis after I/R, here we describe our methods to evaluate the presence and roles of primary cilia in cardiac fibrosis after I/R in mice.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Cílios/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Coração , Fibrose , Miócitos Cardíacos/metabolismo , Miocárdio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA